Bibliografia
1. Jungeblut, C. W. & Sanders, M. Studies of a murine strain of poliomyelitis virus in cotton rats and white mice. J. Exp. Med. 72(4),
407–436. https://doi.org/10.1084/jem.72.4.407 (1940).
2. Canelli, E. et al. Encephalomyocarditis virus infection in an Italian zoo. Virol J 7, 64. https://doi.org/10.1186/1743-422X-7-64
(2010).
3. Billinis, C. Encephalomyocarditis virus infection in wildlife species in Greece. J .Wildl. Dis. 45(2), 522–526. https://doi.org/10.
7589/0090-3558-45.2.522 (2009).
4. Cardeti, G. et al. Encephalomyocarditis virus infection in macaca sylvanus and hystrix cristata from an Italian rescue centre for
wild and exotic animals. Virol. J. 13(1), 193. https://doi.org/10.1186/s12985-016-0653-9 (2016).
5. Reddacliff, L. A., Kirkland, P. D., Hartley, W. J. & Reece, R. L. Encephalomyocarditis virus infections in an Australian zoo. J. Zoo
Wildl. Med. 28(2), 153–157 (1997).
6. Tesh, R. B. & Wallace, G. D. Observations on the natural history of encephalomyocarditis virus. Am. J. Trop. Med. Hyg. 27(1 Pt 1),
133–143. https://doi.org/10.4269/ajtmh.1978.27.133 (1978).
7. Maurice, H. et al. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol Infect
133(3), 547–557. https://doi.org/10.1017/s0950268804003668 (2005).
8. Joo, H. S. Encephalomyocarditis virus. In Disease of Swine 8th edn (eds Straw, B. E. et al.) 139–144 (Iowa State University Press,
1999).
9. Carocci, M. & Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 3(4), 351–367. https://doi.org/10.4161/viru.20573
(2012).
10. Koenen, F., De Clercq, K. & Strobbe, R. Isolation of encephalomyocarditis virus in the offspring of swine with reproductive failure
in Belgium. VI Diergeneesk. Tijdschr. 60, 113–115 (1991).
11. Koenen, F. & Vanderhallen, H. Comparative study of the pathogenic properties of a Belgian and a Greek encephalomyocarditis
virus (EMCV) isolate for sows in gestation. Zentralblatt Veterinarmedizin Reihe B 44(5), 281–286. https://doi.org/10.1111/j.1439-
0450.1997.tb00974.x (1997).
12. Gelmetti, D., Meroni, A., Brocchi, E., Koenen, F. & Cammarata, G. Pathogenesis of encephalomyocarditis experimental infection
in young piglets: A potential animal model to study viral myocarditis. Vet. Res. 37(1), 15–23. https://doi.org/10.1051/vetres:20050
41 (2006).
13. Knowles, N. J. et al. Molecular analysis of encephalomyocarditis viruses isolated from pigs and rodents in Italy. Virus Res. 57(1),
53–62. https://doi.org/10.1016/s0168-1702(98)00081-1 (1998).
14. Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35(3),
221–270. https://doi.org/10.1080/10408410902989837 (2009).
15. Kishimoto, M. et al. Mastomys natalensis is a possible natural rodent reservoir for encephalomyocarditis virus. J. Gen. Virol. https://
doi.org/10.1099/jgv.0.001564 (2021).
16. Jordan, G. W., Cohen, S. H., Dandekar, S. & VandenBrink, K. M. The genomic RNA of diabetogenic encephalomyocarditis virus:
Characterization and molecular cloning. Virology 159(1), 120–125. https://doi.org/10.1016/0042-6822(87)90354-0 (1987).
17. Doi, K. Experimental Encephalomyocarditis virus infection in small laboratory rodents. J. Comp. Pathol. 144(1), 25–40. https://
doi.org/10.1016/j.jcpa.2010.05.001 (2011).
18. Craighead, J. E. & McLane, M. F. Diabetes mellitus: Induction in mice by encephalomyocarditis virus. Science 162(3856), 913–914.
https://doi.org/10.1126/science.162.3856.913 (1968).
19. Czechowicz, J. et al. Prevalence and risk factors for encephalomyocarditis virus infection in Peru. Vector Borne Zoonotic Dis. 11(4),
367–374. https://doi.org/10.1089/vbz.2010.0029 (2011).
20. Oberste, M. S. et al. Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg. Infect. Dis. 15(4), 640–646.
https://doi.org/10.3201/eid1504.081428 (2009).
21. Gajdusek, D. C. Encephalomyocarditis virus infection in childhood. Pediatrics 16(6), 902–906 (1955).
22. Tesh, R. B. The prevalence of encephalomyocarditis virus neutralizing antibodies among various human populations. Am. J. Trop.
Med. Hyg. 27(1 Pt 1), 144–149. https://doi.org/10.4269/ajtmh.1978.27.144 (1978).
23. Feng, R. et al. National serosurvey of encephalomyocarditis virus in healthy people and pigs in China. Arch. Virol. 160(12),
2957–2964. https://doi.org/10.1007/s00705-015-2591-z (2015).
24. Helwig, F. C. & Schmidt, C. H. A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals.
Science 102(2637), 31–33. https://doi.org/10.1126/science.102.2637.31 (1945).
25. Dea, S., Bilodeau, R., Sauvageau, R. & Martineau, G. P. Outbreaks in Quebec pig farms of respiratory and reproductive problems
associated with encephalomyocarditis virus. J. Vet. Diagn. Invest. 3(4), 275–282. https://doi.org/10.1177/104063879100300401
(1991).
26. An, D. J. et al. Encephalomyocarditis in Korea: Serological survey in pigs and phylogenetic analysis of two historical isolates. Vet.
Microbiol. 137(1–2), 37–44. https://doi.org/10.1016/j.vetmic.2009.01.005 (2009).
27. Ge, X. et al. Seroprevalence of encephalomyocarditis virus in intensive pig farms in China. Vet. Rec. 166(5), 145–146. https://doi.
org/10.1136/vr.b4766 (2010).
28. Gualandi, G. L., Cammi, G. & Cardeti, G. A serologic survey of encephalomyocarditis virus infection in pigs in Italy. Microbiologica
12(2), 129–132 (1989).
29. Meroni, A. et al. Encephalomyocarditis (EMC) occurrence in Italy: epidemiology and characterization of EMC virus isolates. In
5th International Congress of Veterinary Virology ESVV, Brescia (IT); 167–168 (2000).
30. Samuel, A. R., Knowles, N. J., Samuel, G. D. & Crowther, J. R. Evaluation of a trapping ELISA for the differentiation of foot-andmouth disease virus strains using monoclonal antibodies. Biologicals 19(4), 299–310. https://doi.org/10.1016/s1045-1056(05)
80019-3 (1991).
31. Koenen, F. et al. Comparison of the pathogenic, antigenic and molecular characteristics of two encephalomyocarditis virus (EMCV)
isolates from Belgium and Greece. Res. Vet. Sci. 62(3), 239–244. https://doi.org/10.1016/s0034-5288(97)90197-1 (1997).
32. Brocchi, E. et al. Molecular epidemiology of recent outbreaks of swine vesicular disease: Two genetically and antigenically distinct
variants in Europe, 1987–94. Epidemiol. Infect 118(1), 51–61. https://doi.org/10.1017/s0950268896007170 (1997).
33. Brocchi, E., Carra, E., Koenen, F. & De Simone, F. Development of monoclonal antibodies based ELISAs for the detection of
encephalomyocarditis virus (EMCV) and of EMCV-induced antibodies. 1 Congresso della Società Italiana di Diagnostica di
Laboratorio Veterinaria (S. I. Di. L. V.). Salsomaggiore. La selezione Veterinaria - Supplemento S207-S208 (1998)
34. Brocchi, E., Carra, E., Knowles, N. J. & De Simone, F. Characterisation of the antigenic structure of encephalomyocarditis virus
(EMCV) by means of monoclonal antibodies. In Proceedings of the 4th International Congress of Veterinary Virology 42–47 (1997).
35. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing
platforms. Mol. Biol. Evol. 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).
36. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol. 17(6), 368–376. https://doi.
org/10.1007/BF01734359 (1981).
37. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans
and chimpanzees. Mol. Biol. Evol. 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 (1993).
8. Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4), 783–791. https://doi.org/10.
1111/j.1558-5646.1985.tb00420.x (1985).
39. Philipps, A. et al. Isolation and molecular characterization of a second serotype of the encephalomyocarditis virus. Vet. Microbiol.
161(1–2), 49–57. https://doi.org/10.1016/j.vetmic.2012.07.006 (2012).
40. Vyshemirskii, O. I. et al. Isolation and genetic characterization of encephalomyocarditis virus 1 from a deceased captive hamadryas
baboon. Virus Res. 244, 164–172. https://doi.org/10.1016/j.virusres.2017.11.001 (2018).
41. Koenen, F., Vanderhallen, H., Dickinson, N. D. & Knowles, N. J. Phylogenetic analysis of European encephalomyocarditis viruses:
Comparison of two genomic regions. Arch Virol. 144(5), 893–903. https://doi.org/10.1007/s007050050554 (1999).
42. van Sandwyk, J. H. D. T., Bennett, N. C., Swanepoel, R. & Bastos, A. D. S. Retrospective genetic characterisation of encephalomyocarditis viruses from African elephant and swine recovers two distinct lineages in South Africa. Vet. Microbiol. 162(1), 23–31.
https://doi.org/10.1016/j.vetmic.2012.08.008 (2013).
43. Maurice, H., Thulke, H. H., Schmid, J. S., Stegeman, A. & Nielen, M. The impact of compartmentalised housing on direct encephalomyocarditis virus (EMCV) transmission among pigs; insight from a model. Prev. Vet. Med. 127, 105–112. https://doi.org/10.
1016/j.prevetmed.2016.03.006 (2016).
44. Bakkali Kassimi, L. et al. Serological survey of encephalomyocarditis virus infection in pigs in France. Vet. Rec. 159(16), 511–514.
https://doi.org/10.1136/vr.159.16.511 (2006).
45. Sin, J. et al. Protective immunity against heterologous challenge with encephalomyocarditis virus by VP1 DNA vaccination: Effect
of coinjection with a granulocyte-macrophage colony stimulating factor gene. Vaccine 15(17), 1827–1833. https://doi.org/10.1016/
s0264-410x(97)88856-1 (1997).
46. Kobasa, D., Mulvey, M., Lee, J. S. & Scraba, D. G. Characterization of mengo virus neutralization epitopes II. Infection of mice
with an attenuated virus. Virology 214(1), 118–127. https://doi.org/10.1006/viro.1995.9948 (1995).
47. Bai, J., Chen, X., Jiang, K., Zeshan, B. & Jiang, P. Identification of VP1 peptides diagnostic of encephalomyocarditis virus from
swine. Virol. J. 11, 226–228. https://doi.org/10.1186/s12985-014-0226-8 (2014).
TORNA INDIETROEradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono
I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.