immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Impatto dello stress termico sulle performance produttive e riproduttive della mandria

Bibliografia

 

1. D. Wolfeson, Z.Roth. 2019. Impact of heat stress on cow reproduction and fertility. In press. Anim Front. 2019 Jan; 9 (1): 32-38.

2. A. Young, H. Schlesser, R.Sterry, P.Fricke. 2020. Effect of heat stress on dairy reproduction. https://dairy.extension.wisc.edu/articles/effects-of-heat-stress-on-dairy-reproduction/

3. P.J. Bridges, M. A. Brusie, and J. E. Fortune. 2005. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29:508-522.

4. E. Gilad, R. Meidan, A. Berman, Y. Graber, and D. Wolfenson. 1993. Effect of heat stress on tonic and GnRH-induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows. J. Reprod. Fertil. 99:315-321.

5. D. Wolfenson, W. W. Thatcher, L. Badinga, J. D. Savio, R. Meidan, B. J. Lew, R. Braw-Tal, and A. Berman. 1995. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 52:1106-1113.

6. Z. Roth, R. Meidan, R. Braw-Tal, and D. Wolfenson. 2000. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 120:83-90.

7. M. Kaim, A. Bloch, D. Wolfenson, R. Braw-Tal, M. Rosenberg, H. Voet, and Y. Folman. 2003. Effects of GnRH administered to cows at the onset of estrus on timing of ovulation, endocrine responses, and conception. J. Dairy Sci. 86:2012-2021.

8. D. Wolfenson, B. J. Lew, W. W. Thatcher, Y. Graber, and R. Meidan. 1997. Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim. Reprod. Sci. 47:9-19.

9. D. Wolfenson, Z. Roth, and R. Meidan. 2000. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim. Reprod. Sci. 60-61: 535-547.

10. P.J.Bridges, M. A. Brusie, and J. E. Fortune. 2005. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29:508-522.

11. D. Wolfenson, H. Sonego, A. Bloch, A. Shaham-Albalancy, M. Kaim, Y. Folman, and R. Meidan. 2002. Seasonal differences in progesterone production by luteinized bovine thecal and granulosa cells. Domest. Anim. Endocrinol. 22:81-90.

12. E. Friedman, Z. Roth, H. Voet, Y. Lavon, and D. Wolfenson. 2012. Progesterone supplementation postinsemination improves fertility of cooled dairy cows during the summer. J. Dairy Sci. 95:3092-3099.

13. M. Gendelman, A. Aroyo, S. Yavin, and Z. Roth. 2010. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction. 140:73-82.

14. Z. Roth, A. Arav, A. Bor, Y. Zeron, R. Braw-Tal, and D. Wolfenson. 2001a. Improvement of quality of oocytes collected in the autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction. 122:737-744.

15. E. Friedman, H. Voet, D. Reznikov, I. Dagoni, and Z. Roth. 2011. Induction of successive follicular waves by gonadotropin-releasing hormone and prostaglandin F(2α) to improve fertility of high-producing cows during the summer and autumn. J. Dairy Sci. 94:2393-2402.

16. R.M. Ferreira, M. R. Chiaratti, C. H. Macabelli, C. A. Rodrigues, M.L. Ferraz, Y. F. Watanabe, L. C. Smith, F. V. Meirelles, and P. S. Baruselli. 2016. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biol. Reprod. 94:66.

17. P.J. Hansen,. 2007. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology. 68 (suppl. 1):S242-S249.

18. P.J.Hansen. 2013Cellular and molecular basis of therapies to ameliorate Cellular and molecular basis of therapies to ameliorate effects of heat stress on embryonic development in cattle. Anim. Reprod. 10:322-333.

19. K.Mietkiewska, P. Kprdowittzki, C. Parei. 2022. Effects of heat stress on bovine oocytes and early embryonic development. An update. Cells2022, 11, 4073.

20. S. Tao, G.E. Dahl. Invited review: Heat stress effects during late gestation on dry cows and their calves. J. Dairy Sci. 2013, 96,4079-4093.

21. L.S.A. Camargo, T. Aguirre-Lavin, P. Adenot, T.D. Araujo, V.R.A. Mendes, I.D. Louro, N. Beaujean, E.D. Souza. 2019. Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo. Reproduction 2019, 158, 313-322.

22. J.P. Trout, L.R. McDowell, P.J. Hansen. Characteristics of the estrous cycle and antioxidant status of lactating Holstein cows exposed to heat stress.  1998. J. Dairy Sci. 1998, 81, 1244-1250.

23. M. Gunnar, K. Quevedo. 2007.  The neurobiology of stress and development. Annu. Rev. Psychol. 2007, 58, 145-173.

24. B. Ronchi, G. Stradaioli, A. Verini Supplizi, U. Bernabucci, N. Lacetera, P.A. Accorsi, A. Nardone, E. Seren. Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17, LH, FSH, prolactin and cortisol in Holstein heifers. 2001. Livest. Prod. Sci. 2001, 68, 231-241.

25. J. Van Gool, H. van Vugt, M. Helle, L.A. Aarden, L.A. 1990. The relation among stress, adrenalin, interleukin-6 and acute phase proteins in the rat. Clin. Immunol. Immunopathol. 1990, 57, 200-210.

26. I.J. Elenkov, D.A. Papanicolaou, R.L. Wilder, G.P. Chrousos. 1996. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: Clinical implications. Proc. Assoc. Am. Physicians 1996, 108, 374-381.

27. M. Bagath, G. Krishnan, C. Devaraj, V.P. Rashamol, P.  Pragna, A.M.  Lees, V. Sejian. 2019. The impact of heat stress on the immune system in dairy cattle: A review. Res. Vet. Sci. 2019, 126, 94-102.

28. L. Min, S. Zhao, H. Tian, X. Zhou, Y.  Zhang, S. Li, H. Yang, N. Zheng, J. J. Wang. 2017. Metabolic responses and omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol. 2017, 61, 1149-1158.

29. L.H. Baumgard, R.P. Rhoads. 2013. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311-337.

30. L.A. Rispoli, R.R. Payton, C. Gondro, A.M. Saxton, K.A. Nagle, B.W. Jenkins, F.N. Schrick, J.L. Edwards. 2013. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: Altered matrix metallopeptidase 9 and progesterone production. Reproduction 2013, 146, 193-207.

31. K.B. Dobbs, M. Rodriguez, M.J. Sudano, M.S. Ortega, P.J.  Hansen. 2013. Dynamics of DNA Methylation during Early Development of the Preimplantation Bovine Embryo. PLoS ONE 2013, 8, e66230-10.

32. R.M. Rivera, P.J.  Hansen. 2001. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 2001, 121, 107-115.

33. F.F. Paula-Lopes, P.J. Hansen. 2002. Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 2002, 66, 1169-1177.

34. G.E. Dahl, A.L. Skibiel, J. Laporta. 2019. In Utero Heat Stress Programs Reduced Performance and Health in Calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 343-353.

35. M. Bakony, V. Jurkovich. 2020. Heat stress in dairy calves from birth to weaning. J. Dairy Res. 2020, 87, 53-59.

36. K. Stamperna, E. Dovolou, T. Giannoulis, M. Kalemkeridou, I. Nanas, K. Dadouli, K. Moutou, Z.  Mamuris, G.S. Amiridis. 2021.  Developmental competence of heat stressed oocytes from Holstein and Limousine cows matured in vitro. Reprod. Domest. Anim. 2021, 56, 130-1314.

37. V. Ouellet, J. Laporta, G.E. Dahl. 2020. Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology 2020, 150, 471-–479.

38. E. Merlot, D. Couret, W. Otten. 2008. Prenatal stress, fetal imprinting and immunity. Brain Behav. Immun. 2008, 22, 42-51.

39. J.W. West. 2003.  Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131-2144.

40. L.A. Bate, R.R. Hacker. 1985. Influence of environmental temperature during late gestation and soon after birth on IgG absorption by newborn piglets. Can. J. Anim. Sci. 1985, 65, 87-93.

41. E.R.Jordan. 2003. Effects of heat stress on reproduction. J.Dairy Sci. 86: (E.Suppl.) E104-E114.

42. L.D. Ulberg, P. J. Burfening. 1967. Embryo death resulting from adverse environment on spermatozoa or ova. J. Anim. Sci. 26:571-577.

43. D.V. Armstrong, D. V. 1994. Heat stress interactions with shade and cooling. J. Dairy Sci. 77:2044-2050.

44. E.J.P.Schmitt, T. Diaz, C. M. Barros, R. L. de la Sota, M. Drost, E. W. Fredriksson, C. R. Staples, R. Thorner, and W. W. Thatcher. 1996. Differential response of the luteal phase and fertility in cattle following ovulation of the first-wave follicle with human chorionic gonadotropin or an agonist of gonadotropin-releasing hormone. J. Anim. Sci. 74:1074-1083.

45. S. Gandy, S. Bowers, K. Graves, A. Elias, S. Willard, and C. Whisnant. 2002. Administration of GnRH post-breeding improves pregnancy rates and increases serum concentrations of progesterone during heat stress in dairy cattle. J. Anim. Sci. 80 (Suppl. 2):17. (Abstr.).

46. T. Diaz, T., E. J.-P. Schmitt, M.-J. Thatcher, and W. W. Thatcher. 1998. Human chorionic gonadotropin-induced alterations in ovarian follicular dynamics during the estrous cycle of heifers. J. Anim. Sci. 76:1929-1936.

 

 

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
06/06/2024

Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono

I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.

 
 

Formazione Settore Agro-Zootecnico

 

 
Formazione a distanza abbinata a SUMMA

SPC-sviluppo-professionale-continuo