immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

I vitelli socialmente attivi hanno maggiore probabilità di contrarre VTEC O157:H7 rispetto agli individui che mostrano segni di scarso benessere

Bibliografia

1. Sartz, L. et al. An outbreak of Escherichia coli O157:H7 infection in southern Sweden associated with consumption of fermented

sausage; aspects of sausage production that increase the risk of contamination. Epidemiol. Infect. 136, 370–80 (2008).

2. Folkhälsomyndigheten. Enterohemorragisk E. coli infektion (EHEC). (2019). Available at: https://www.folkhalsomyndigheten.se/

amnesomraden/statistik-ochundersokningar/sjukdomsstatistik/enterohemorragisk-e-coli-infektion-ehec/. (Accessed: 21st May

2019).

3. Söderström, A. et al. A large Escherichia coli O157 outbreak in Sweden associated with locally produced lettuce. Foodborne Pathog.

Dis. 5, 339–349 (2008).

4. Widgren, S. et al. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157:H7 status in 126 cattle

herds. Prev. Vet. Med. 121, 343–352 (2015).

5. Eriksson, E. & Aspan, A. Prevalence of verotoxin-producing Escherichia coli (VTEC) O157 in Swedish dairy herds. Epidemiol. Infect.

13, 349–358 (2005).

6. Kistemann, T., Zimmer, S., Vågsholm, I. & Andersson, Y. GIS-supported investigation of human EHEC and cattle VTEC O157

infections in Sweden: Geographical distribution, spatial variation and possible risk factors. Epidemiol. Infect. 132, 495–505 (2004).

7. Dean-Nystrom, E. A., Bosworth, B. T. & Moon, H. W. Pathogenesis of O157:H7 Escherichia coli infection in neonatal calves. Adv.

Exp. Med. Biol 412, 47–51 (1997).

8. Kolenda, R., Burdukiewicz, M. & Schierack, P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia

coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front. Cell. Infect. Microbiol. 5 (2015).

9. Ferens, W. A. & Hovde, C. J. Escherichia coli O157:H7: Animal reservoir and sources of human infection. Foodborne Pathog. Dis. 8,

465–487 (2010).

10. Naylor, S. W. et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic

Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71, 1505–1512 (2003).

11. Davis, M. A. et al. Comparison of cultures from rectoanal-junction mucosal swabs and feces for detection of Escherichia coli O157

in dairy heifers. Appl. Environ. Microbiol. 72, 3766–3770 (2006).

12. Baines, D., Lee, B. & McAllister, T. Heterogeneity in enterohemorrhagic Escherichia coli O157:H7 fecal shedding in cattle is related

to Escherichia coli O157:H7 colonization of the small and large intestine. Can. J. Microbiol. 54, 984–995 (2008).

13. Chase-Topping, M. E., Gally, D., Low, C., Matthews, L. & Woolhouse, M. Super-shedding and the link between human infection and

livestock carriage of Escherichia coli O157. Nat. Rev. Microbiol 6, 904–12 (2008).

14. Matthews, L. et al. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc. Natl. Acad. Sci.

USA 103, 547–52 (2006).

15. Arthur, T. M. et al. Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide

contamination. Appl. Environ. Microbiol. 75, 6515–6523 (2009).

16. Cobbold, R. N. et al. Rectoanal junction colonization of feedlot cattle by Escherichia coli O157:H7 and its association with

supershedders and excretion dynamics. Appl. Environ. Microbiol. 73, 1563–1568 (2007).

17. Chase-Topping, M. E. et al. Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. J. Clin.

Microbiol. 45, 1594–603 (2007).

18. Spencer, S. E. F., Besser, T. E., Cobbold, R. N. & French, N. P. ‘Super’ or just ‘above average’? Supershedders and the transmission of

Escherichia coli O157:H7 among feedlot cattle. J. R. Soc. Interface 12, 20150446, https://doi.org/10.1098/rsif.2015.0446 (2015).

19. Widgren, S., Engblom, S., Emanuelson, U. & Lindberg, A. Spatio-temporal modelling of verotoxigenic Escherichia coli O157 in cattle

in Sweden: exploring options for control. Vet. Res. 49, 78 (2018).

20. Matthews, L. et al. Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiol. Infect. 134, 131–42

(2006).

21. Besser, T. E., Richards, B. L., Rice, D. H. & Hancock, D. D. Escherichia coli O157: H7 infection of calves: infectious dose. Epidemiol

Infect 127, 555–560 (2001).

22. Sheng, H. et al. Standardized Escherichia coli O157: H7 exposure studies in cattle provide evidence that bovine factors do not drive

increased summertime colonization. Appl. Environ. Microbiol. 82, 964–971 (2016).

23. Gyles, C. L. Relevance in pathogenesis research. Vet. Microbiol. 153, 2–12 (2011).

24. Williams, K. J., Ward, M. P. & Dhungyel, O. P. Daily variations in Escherichia coli O157 shedding patterns in a cohort of dairy heifers

at pasture. Epidemiol. Infect. 143, 1388–1397 (2015).

25. Mechie, S. C., Chapman, P. A. & Siddons, C. A. A fifteen month study of Escherichia coli O157:H7 in a dairy herd. Epidemiol. Infect.

118, 17–25 (1997).

26. Smith, R. P., Pollitt, W. J. & Paiba, G. A. A longitudinal study of risk factors for shedding of VTEC O157 by young cattle in herds with

known E. coli O157 carriage. Epidemiol. Infect. 144, 1818–29 (2016).

27. Robinson, S. E., Wright, E. J., Hart, C. A., Bennett, M. & French, N. P. Intermittent and persistent shedding of Escherichia coli O157

in cohorts of naturally infected calves. J. Appl. Microbiol. 97, 1045–1053 (2004).

28. Munns, K. D. et al. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog. Dis. 12, 89–103 (2015).

29. Wiepkema, P. R., van Hellemond, K. K., Roessingh, P. & Romberg, H. Behaviour and Abomasal Damage in Individual Veal Calves.

Appl. Anim. Behav. Sci. 18, 257–268 (1987).

30. Lecorps, B., Kappel, S., Weary, D. M. & Keyserlingk, M. A. G. Dairy calves’ personality traits predict social proximity and response

to an emotional challenge. Sci. Rep. 8, 16350, https://doi.org/10.1038/s41598-018-34281-2 (2018).

31. Fischer-Tenhagen, C., Ladwig-Wiegard, M., Heuwieser, W. & Thöne-Reineke, C. Short communication: Is hair cortisol a potential

indicator for stress caused by chronic lameness in dairy cows? J. Dairy Sci. 101, 5439–5443 (2018).

32. Eitam, H., Vaya, J., Brosh, A. & Orlov, A. Differential stress responses among newly received calves: variations in reductant capacity

and Hsp gene expression. Cell Stress Chaperones 15, 865–876 (2010).

33. Lecorps, B., Weary, D. M. & Von Keyserlingk, M. A. G. Pessimism and fearfulness in dairy calves. Sci. Rep. 8, 1421, https://doi.

org/10.1038/s41598-017-17214-3 (2018).

34. Broom, D. M. Animal welfare: concepts and measurement. J. Anim. Sci 69, 4167–4175 (1991).

35. Duncan, I. J. H. Science-based assessment of animal welfare: farm animals. Rev. Sci. Tech. – Off. Int. des Epizoot 24, 483–492 (2005).

36. Whay, H. R., Main, D. C. J., Green, L. E. & Webster, A. J. F. An animal-based welfare assessment of group-housed calves on UK dairy

farms. Animal Welfare 12, 611–617 (2003).

37. Tamminen, L.-M. et al. Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study

combining information from questionnaires, spatial data and molecular analyses. Prev. Vet. Med. 170, 104726, https://doi.

org/10.1016/j.prevetmed.2019.104726 (2019).

38. Cray, W. C. & Casey, T. Effect of dietary stress on fecal shedding of Escherichia coli O157: H7 in Calves. Appl. Environ. Microbiol 64,

1975–1979 (1998).

39. Williams, K. J., Ward, M. P., Dhungyel, O. P. & Hall, E. J. S. Risk factors for Escherichia coli O157 shedding and super-shedding by

dairy heifers at pasture. Epidemiol. Infect. 143, 1004–1015 (2015).

40. Robertson, C., Boyle, P., Hsieh, C. C., Macfarlane, G. J. & Maisonneuve, P. Some statistical considerations in the analysis of casecontrol studies when the exposure variables are continuous measurements. Epidemiology 5, 164–170 (1994).

41. Mir, R. A. et al. Colonization of Beef Cattle by Shiga Toxin-Producing Escherichia coli during the First Year of Life: A Cohort Study.

PLoS One 11, e0148518, https://doi.org/10.1371/journal.pone.0148518 (2016).

42. Jeon, S. J., Elzo, M., DiLorenzo, N., Lamb, G. C. & Jeong, K. C. Evaluation of Animal Genetic and Physiological Factors That Affect

the Prevalence of Escherichia coli O157 in Cattle. PLoS One 8, e55728, https://doi.org/10.1371/journal.pone.0055728 (2013).

43. Veissier, I. & Boissy, A. Stress and welfare: Two complementary concepts that are intrinsically related to the animal’s point of view.

Physiol. Behav. 92, 429–433 (2007).

44. Boyle, L. A. & O’Driscoll, K. Animal welfare: An essential component in food safety and quality in Food Chain Integrity: A Holistic

Approach to Food Traceability, Safety, Quality and Authenticity (eds Hoorfar, J., Jordan, K., Butler, F., Prugger, R.) 169–186

(Woodhead Publishing, 2011).

45. Mills, D. S. & Marchant-Forde, J. N. The Encyclopedia of applied animal behaviour and welfare. 115–116 (CABI, 2010).

46. Spruijt, B. M., van Hoof, J. A. R. A. M. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–851

(1992).

47. Robinson, S. E., Brown, P. E., Wright, E. J., Hart, C. A. & French, N. P. Quantifying within- and between-animal variation and

uncertainty associated with counts of Escherichia coli O157 occurring in naturally infected cattle faeces. J. R. Soc. Interface 6,

169–177 (2009).

48. Perelle, S., Dilasser, F., Grout, J. & Fach, P. Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91,

O103, O11

49. Nielsen, E. M. & Andersen, M. T. Detection and characterization of verocytotoxin-producing Escherichia coli by automated 5′

nuclease PCR assay. J. Clin. Microbiol. 41, 2884–2893 (2003).

50. Söderlund, R. et al. Molecular typing of Escherichia coli O157:H7 isolates from Swedish cattle and human cases: population

dynamics and virulence. J. Clin. Microbiol. 52, 3906–12 (2014).

51. Bokkers, E. A. M. & Koene, P. Activity, oral behaviour and slaughter data as welfare indicators in veal calves: A comparison of three

housing systems. Appl. Anim. Behav. Sci. 75, 1–15 (2001).

52. R Core Team. R: A Language and Environment for Statistical Computing. (2018). https://www.r-project.org/

53. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).

54. Adobe Inc. Adobe Illustrator. (2017). https://adobe.com/products/illustrator

55. Stekhoven, D. J. & Bühlmann, P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28,

112–118 (2012).

56. Stekhoven, D. J. missForest: Nonparametric missing value imputation using random forest. R package version 1.4. (2013).

57. Hummel, M., Edelmann, D. & Kopp-Schneider, A. CluMix R package version 2.3.1. (2019).

58. Hummel, M., Edelmann, D. & Kopp-Schneider, A. Clustering of samples and variables with mixed-type data. PLoS One 12 (2017).

59. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via Coordinate Descent. J. Stat. Softw. 33,

1–3 (2010).

60. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R. (Springer

Publishing Company, 2013).

61. Hastie, T. & Qian, J. Glmnet Vignette. 2, 1–30 (2014).

62. Chavent, M., Kuentz, V., Labenne, A., Benoit, L. & Saracco, J. PCAmixdata: Multivariate Analysis of Mixed Data. (2017).

63. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

64. Rencher, A. C. & Christensen, W. F. Principal component analysis in Methods of Multivariate Analysis. 405–434 (Wiley, 2012).

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
04/04/2024

Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono

I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.

 
 

Formazione Settore Agro-Zootecnico

 

 
Formazione a distanza abbinata a SUMMA

SPC-sviluppo-professionale-continuo