immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Apparato riproduttore e microbioma: stato dell’arte, sfide e potenzialità

Bibliografia

 

1. Adnane M., Chapwanya A. (2022). A review of the diversity of the genital tract microbiome and implications for fertility of cattle. Animals 12, 460. doi: 10.3390/ani12040460

2. Ahmad A. A., Yang C., Zhang J., Kalwar Q., Liang Z., Li C., et al. (2020). Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00625

3. Aldars García L., Marin A. C., Chaparro M., Gisbert J. P. (2021). The interplay between immune system and microbiota in inflammatory bowel disease: A narrative review. Int. J. Mol. Sci. 22, 1-15. doi: 10.3390/ijms22063076

4. Alipour M. J., Jalanka J., Pessa-Morikawa T., Kokkonen T., Satokari R., Hynönen U., et al. (2018). The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 8, 1-14. doi: 10.1038/s41598-018-28733-y

5. Alpizar E., Spicer L. J. (1994). Effects of interleukin-6 on proliferation and follicle-stimulating hormone-induced estradiol production by bovine granulosa cells in vitro: dependence on size of follicle1. Biol. Reprod. 50, 38-43. doi: 10.1095/biolreprod50.1.38

6. Amat S., Holman D. B., Schmidt K., McCarthy K. L., Dorsam S. T., Ward A. K., et al. (2022). Characterization of the microbiota associated with 12-week-old bovine fetuses exposed to divergent in utero nutrition. Front. Microbiol. 12, 1-28. doi: 10.3389/fmicb.2021.771832

7. Amat S., Holman D. B., Schmidt K., Menezes A. C. B., Baumgaertner F., Winders T., et al. (2021). The nasopharyngeal, ruminal, and vaginal microbiota and the core taxa shared across these microbiomes in virgin yearling heifers exposed to divergent in utero nutrition during their first trimester of gestation and in pregnant beef heifers in response to. Microorganisms 9, 1-28. doi: 10.3390/microorganisms9102011

8. Ametaj B. N., Iqbal S., Selami F., Odhiambo J. F., Wang Y., Gänzle M. G., et al. (2014). Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res. Veterinary Sci. 96, 365-370. doi: 10.1016/j.rvsc.2014.02.007

9. Anderson M. L. (2007). Infectious causes of bovine abortion during mid- to late-gestation. Theriogenology 68, 474-486. doi: 10.1016/j.theriogenology.2007.04.001

10. Andrews T., Neher D. A., Weicht T. R., Barlow J. W. (2019). Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PloS One 14, 1-21. doi: 10.1371/journal.pone.0225001

11. Appiah M., Wang J., Lu W. (2020). Microflora in the reproductive tract of cattle: A review. Agriculture 10, 232. doi: 10.3390/agriculture10060232

12. Arias-Sánchez F. I., Vessman B., Mitri S. (2019). Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PloS Biol. 17, 1-8. doi: 10.1371/journal.pbio.3000356

13. Ault T. B., Clemmons B. A., Reese S. T., Dantas F. G., Franco G. A., Smith T. P. L., et al. (2019a). Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination1. J. Anim. Sci. 97, 4305-4313. doi: 10.1093/jas/skz212

14. Ault T. B., Clemmons B. A., Reese S. T., Dantas F. G., Franco G. A., Smith T. P. L., et al. (2019b). Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows1. J. Anim. Sci. 97, 4298-4304. doi: 10.1093/jas/skz210

15. Ault-Seay T. B., Moorey S. E., Mathew D. J., Schrick F. N., Pohler K. G., McLean K. J., et al. (2023). Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. Front. Anim. Sci. 4. doi: 10.3389/fanim.2023.1111636

16.  Baker J. M., Al-Nakkash L., Herbst-Kralovetz M. M. (2017). Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 103, 45-53. doi: 10.1016/j.maturitas.2017.06.025

17. Baker J. M., Chase D. M., Herbst-Kralovetz M. M. (2018). Uterine microbiota: Residents, tourists, or invaders? Front. Immunol. 9. doi: 10.3389/fimmu.2018.00208

18. Ballas P., Reinländer U., Schlegl R., Ehling-Schulz M., Drillich M., Wagener K. (2021). Characterization of intrauterine cultivable aerobic microbiota at the time of insemination in dairy cows with and without mild endometritis. Theriogenology 159, 28-34. doi: 10.1016/j.theriogenology.2020.10.018

19. Basbas C., Garzon A., Schlesener C., van Heule M., Profeta R., Weimer B. C., et al. (2023). Unveiling the microbiome during post-partum uterine infection: a deep shotgun sequencing approach to characterize the dairy cow uterine microbiome. Anim. Microbiome 5, 1-18. doi: 10.1186/s42523-023-00281-5

20. Bentley O. G., Phillips P. H. (1951). The effect of low manganese rations upon dairy cattle. J. Dairy Sci. 34, 396-403. doi: 10.3168/jds.S0022-0302(51)91727-4

21. Bicalho M. L. S., Lima S., Higgins C. H., MaChado V. S., Lima F. S., Bicalho R. C. (2017a). Genetic and functional analysis of the bovine uterine microbiota. Part II: Purulent vaginal discharge versus healthy cows. J. Dairy Sci. 100, 3863-3874. doi: 10.3168/jds.2016-12061

22. Bicalho M. L. S., MaChado V. S., Higgins C. H., Lima F. S., Bicalho R. C. (2017b). Genetic and functional analysis of the bovine uterine microbiota. Part I: Metritis versus healthy cows. J. Dairy Sci. 100, 3850-3862. doi: 10.3168/jds.2016-12058

23. Bicalho M. L. S., Santin T., Rodrigues M. X., Marques C. E., Lima S. F., Bicalho R. C. (2017c). Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 100, 3043-3058. doi: 10.3168/jds.2016-11623

24. Bicalho M. L. S., Zinicola M., MaChado V. S., Lima F. S., Teixeira A. G. V., Narbus C., et al. (2019). Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle I: Production and functional characterization of rbIL-8 in vitro and in vivo. J. Dairy Sci. 102, 10304-10315. doi: 10.3168/jds.2019-16334

25. Bond J., Wiltbank J. N. (1970). Effect of energy and protein on estrus, conception rate, growth and milk production of beef females. J. Anim. Sci. 30, 438-444. doi: 10.2527/jas1970.303438x

26. Bowman J. P., Hugo C., Nicholson A., Hahnke R., Lau E. F., Holmes B., et al. (2023). International Committee on Systematics of Prokaryotes: Subcommittee on the taxonomy of aerobic Bacteroidota. Minutes of the online meeting 25 April 2023. Int. J. Systematic Evolutionary Microbiol. 73, 1-5. doi: 10.1099/ijsem.0.006144

27. Broadway P. R., Carroll J. A., Burdick Sanchez N. C., Cravey M. D., Corley J. R. (2020). Some negative effects of heat stress in feedlot heifers may be mitigated via yeast probiotic supplementation. Front. Veterinary Sci. 6. doi: 10.3389/fvets.2019.00515

28. Brulin L., Ducrocq S., Even G., Mp S., Martel S., Merlin S., et al. (2023). Characterization of bovine vaginal microbiota and its relationship with host fertility , health , and production. bioRxiv, 1-28. doi: 10.1101/2023.12.13.571514

29. Chadchan S. B., Singh V., Kommagani R. (2023). Female reproductive dysfunctions and the gut microbiota. J Mol Endocrinol. 69, 1-21. doi: 10.1530/JME-21-0238.Female

30.  Chen S., Yong Y., Ju X. (2021). Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J. Thermal Biol. 99, 103019. doi: 10.1016/j.jtherbio.2021.103019

31. Clemmons B. A., Reese S. T., Dantas F. G., Franco G. A., Smith T. P. L., Adeyosoye O. I., et al. (2017). Vaginal and uterine bacterial communities in postpartum lactating cows. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.01047

32. Çömlekcio?lu U., Jezierska S., Opsomer G., Pascottini O. B. (2024). Uterine microbial ecology and disease in cattle: A review. Theriogenology 213, 66-78. doi: 10.1016/j.theriogenology.2023.09.016

33. Cribby S., Taylor M., Reid G. (2008). Vaginal microbiota and the use of probiotics. Interdiscip. Perspect. Infect. Dis. 2008, 1-9. doi: 10.1155/2008/256490

34. Dalanezi F. M., Joaquim S. F., Guimarães F. F., Guerra S. T., Lopes B. C., Schmidt E. M. S., et al. (2020). Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 103, 3648-3655. doi: 10.3168/jds.2019-16841

35. Darnaud M., De Vadder F., Bogeat P., Boucinha L., Bulteau A. L., Bunescu A., et al. (2021). A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nat. Commun. 12, 1-21. doi: 10.1038/s41467-021-26963-9.

36. Dash S., Chakravarty A. K., Singh A., Upadhyay A., Singh M., Yousuf S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World 9, 235-244. doi: 10.14202/vetworld.2016.235-244

37. Deb G. K., Dey S. R., Bang J. I., Cho S. J., Park H. C., Lee J. G., et al. (2011). 9-cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumor necrosis factor-a gene expression. J. Anim. Sci. 89, 2759-2767. doi: 10.2527/jas.2011-3848

38. De Carli S., Breyer G. M., Lopes C. E., Zitelli L. C., Contreras L. V. Q., de Faria Valle S., et al. (2023). Characterization of the cervicovaginal microbiota of female beef cattle harboring Campylobacter fetus subsp. venerealis using 16S rDNA gene sequencing. FEMS Microbiol. Ecol. 99, 1-11. doi: 10.1093/femsec/fiad029

39. Deng F., McClure M., Rorie R., Wang X., Chai J., Wei X., et al. (2019). The vaginal and fecal microbiomes are related to pregnancy status in beef heifers. J. Anim. Sci. Biotechnol. 10, 1-13. doi: 10.1186/s40104-019-0401-2

40. Deng Q., Odhiambo J. F., Farooq U., Lam T., Dunn S. M., Ametaj B. N. (2016). Intravaginal probiotics modulated metabolic status and improved milk production and composition of transition dairy cows1. J. Anim. Sci. 94, 760-770. doi: 10.2527/jas.2015-9650.

41. Deng Q., Odhiambo J. F., Farooq U., Lam T., Dunn S. M., Gänzle M. G., et al. (2015). Intravaginally administered lactic acid bacteria expedited uterine involution and modulated hormonal profiles of transition dairy cows. J. Dairy Sci. 98, 6018-6028. doi: 10.3168/jds.2014-8559

42. De Rensis F., Scaramuzzi R. J. (2003). Heat stress and seasonal effects on reproduction in the dairy cow - A review. Theriogenology 60, 1139-1151. doi: 10.1016/S0093-691X(03)00126-2

43. Dias N. W., Rodrigues V., Mercadante G., Biase F., Currin J., Ealy A., et al. (2022). Changes in vaginal microbiome of beef cows enrolled in estrous synchronization protocols and its relation to fertility.

44. Diskin M. G., Kenny D. A. (2016). Managing the reproductive performance of beef cows. Theriogenology 86, 379-387. doi: 10.1016/j.theriogenology.2016.04.052

45. Esposito G., Lim J. J., Tasara T., Irons P. C., Webb E. C., Chapwanya A. (2016). 0137 The endometrial microbiome in transition cows fed an energy-restricted diet. J. Anim. Sci. 94, 64-65. doi: 10.2527/jam2016-0137

46. Fan P., Bian B., Teng L., Nelson C. D., Driver J., Elzo M. A., et al. (2020). Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J. 14, 302-317. doi: 10.1038/s41396-019-0529-2

47. Fardini Y., Chung P., Dumm R., Joshi N., Han Y. W. (2010). Transmission of diverse oral bacteria to murine placenta: Evidence for the oral microbiome as a potential source of intrauterine infection. Infection Immun. 78, 1789-1796. doi: 10.1128/IAI.01395-09

48. Franco-Lopez J., Duplessis M., Bui A., Reymond C., Poisson W., Blais L., et al. (2020). Correlations between the composition of the bovine microbiota and vitamin B 12 abundance. mSystems 5, 1-16. doi: 10.1128/mSystems.00107-20

49. Fu Y., He Y., Xiang K., Zhao C., He Z., Qiu M., et al. (2022). The role of rumen microbiota and its metabolites in subacute ruminal acidosis (SARA)-induced inflammatory diseases of ruminants. Microorganisms 10, 1-16. doi: 10.3390/microorganisms10081495

50. Fuller R. (1989). Probiotics in man and animals. J. Appl. bacteriology 66, 365-378. doi: 10.1111/j.1365-2672.1989.tb05105.x

51. Funeshima N., Miura R., Katoh T., Yaginuma H., Kitou T., Yoshimura I., et al. (2021). Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows. BMC Veterinary Res. 17, 1-10. doi: 10.1186/s12917-021-02755-7

52. Galbat S. A., Keshta H. G. (2020). Evaluation of rumen transfaunation after treatment of rumen acidosis in cows. Curr. Sci. Int. 9, 625-632. doi: 10.36632/csi/2020.9.4.55

53. Galvão K. N., Bicalho R. C., Jeon S. J. (2019a). Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. J. Dairy Sci. 102, 11786-11797. doi: 10.3168/jds.2019-17106

54. Galvão K. N., de Oliveira E. B., Cunha F., Daetz R., Jones K., Ma Z., et al. (2020). Effect of chitosan microparticles on the uterine microbiome of dairy cows with metritis. Appl. Environ. Microbiol. 86, 1-14. doi: 10.1128/AEM.01066-20

55. Galvão K. N., Felippe M. J. B., Brittin S. B., Sper R., Fraga M., Galvão J. S., et al. (2012). Evaluation of cytokine expression by blood monocytes of lactating Holstein cows with or without postpartum uterine disease. Theriogenology 77, 356-372. doi: 10.1016/j.theriogenology.2011.08.008

56. Galvão K. N., Higgins C. H., Zinicola M., Jeon S. J., Korzec H., Bicalho R. C. (2019b). Effect of pegbovigrastim administration on the microbiome found in the vagina of cows postpartum. J. Dairy Sci. 102, 3439-3451. doi: 10.3168/jds.2018-15783

57. Galvão K. N., Santos J. E. P. (2014). Recent advances in the immunology and uterine microbiology of healthy cows and cows that develop uterine disease. Turkish J. Veterinary Anim. Sci. 38, 577-588. doi: 10.3906/vet-1407-29

58. Genís S., Sánchez-Chardi A., Bach À., Fàbregas F., Arís A. (2017). A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 100, 479-492. doi: 10.3168/jds.2016-11671

59. Giannattasio-Ferraz S., Laguardia-Nascimento M., Gasparini M. R., Leite L. R., Araujo F. M. G., de Matos Salim A. C., et al. (2019). A common vaginal microbiota composition among breeds of Bos taurus indicus (Gyr and Nellore). Braz. J. Microbiol. 50, 1115-1124. doi: 10.1007/s42770-019-00120-3

60. Gobikrushanth M., Dos Santos S. J., Champika F., Hill J. E., Dadarwal D. (2024). Uterine microbial profiles in healthy postpartum dairy cows do not vary with sampling techniques or phases of estrous cycle. Theriogenology 214, 298-306. doi: 10.1016/j.theriogenology.2023.11.004

61. Gohil P., Nanavati B., Patel K., Suthar V., Joshi M., Patil D. B., et al. (2023). Assessing the efficacy of probiotics in augmenting bovine reproductive health: an integrated in vitro, in silico, and in vivo study. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1137611

62. Gonzalez Moreno C., Fontana C., Cocconcelli P. S., Callegari M. L., Otero M. C. (2016). Vaginal microbial communities from synchronized heifers and cows with reproductive disorders. J. Appl. Microbiol. 121, 1232-1241. doi: 10.1111/jam.13239

63. Gryaznova M. V., Syromyatnikov M. Y., Dvoretskaya Y. D., Solodskikh S. A., Klimov N. T., Mikhalev V. I., et al. (2021). Microbiota of cow’s milk with udder pathologies. Microorganisms 9, 1-11. doi: 10.3390/microorganisms9091974

64. Guilbert H. R. (1942). Some endocrine relationships in nutritional reproductive failure (A review). J. Anim. Sci. 1, 3-13. doi: 10.2527/jas1942.0113

65. Günther V., Allahqoli L., Watrowski R., Maass N., Ackermann J., von Otte S., et al. (2022). Vaginal microbiome in reproductive medicine. Diagnostics 12, 1-17. doi: 10.3390/diagnostics12081948

66. Gupta A., Nair S. (2020). Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01357

67. Gustafsson H., Emanuelson U. (2002). Characterisation of the repeat breeding syndrome in swedish dairy cattle. Acta Veterinaria Scandinavica 43, 115-125. doi: 10.1186/1751-0147-43-115

68. Guzman C. E., Wood J. L., Egidi E., White-Monsant A. C., Semenec L., Grommen S. V. H., et al. (2020). A pioneer calf foetus microbiome. Sci. Rep. 10, 1-13. doi: 10.1038/s41598-020-74677-7

69. Hang B. P. T., Wredle E., Dicksved J. (2021). Analysis of the developing gut microbiota in young dairy calves—impact of colostrum microbiota and gut disturbances. Trop. Anim. Health Production 53, 1-8. doi: 10.1007/s11250-020-02535-9

70. Hansen P. J. (2013). Physiology and endocrinology symposium: Maternal immunological adjustments to pregnancy and parturition in ruminants and possible implications for postpartum uterine health: Is there a prepartum-postpartum nexus? J. Anim. Sci. 91, 1639-1649. doi: 10.2527/jas.2012-5934

71. Hansen P. J., Soto P., Natzke R. P. (2004). Mastitis and fertility in cattle - possible involvement of inflammation or immune activation in embryonic mortality*. Am. J. Reprod. Immunol. 51, 294-301. doi: 10.1111/j.1600-0897.2004.00160.x2

72. Hashem N. M., Gonzalez-Bulnes A. (2022). The use of probiotics for management and improvement of reproductive eubiosis and function. Nutrients 14, 1-18. doi: 10.3390/nu14040902

73. He B., Jin S., Cao J., Mi L., Wang J. (2019). Metatranscriptomics of the Hu sheep rumen microbiome reveals novel cellulases. Biotechnol. Biofuels 12, 1-15. doi: 10.1186/s13068-019-1498-4

74. Holeková B., Schwarzbacherová V., Galdíková M., Koleni?ová S., Halu?ková J., Stani?ová J., et al. (2021). Chromosomal aberrations in cattle. Genes 12, 1-16. doi: 10.3390/genes12091330

75. Howes-Mischel R., Tracy M. (2023). Maternal microbis: How kinship composes reproductive relations for a human-bovine maternal microbiome. Feminist Anthropology 4, 216-232. doi: 10.1002/fea2.12123

76. Hummel G. L., Austin K., Cunningham-Hollinger H. C. (2022). Comparing the maternal-fetal microbiome of humans and cattle: a translational assessment of the reproductive, placental, and fetal gut microbiomes. Biol. Reprod. 107, 371-381. doi: 10.1093/biolre/ioac067

77. Hummel G., Woodruff K., Austin K., Knuth R., Lake S., Cunningham-Hollinger H. (2021b). Late gestation maternal feed restriction decreases microbial diversity of the placenta while mineral supplementation improves richness of the fetal gut microbiome in cattle. Animals 11, 1-15. doi: 10.3390/ani11082219

78. Hummel G. L., Woodruff K. L., Austin K. J., Knuth R. M., Williams J. D., Cunningham-Hollinger H. C. (2021a). The materno-placental microbiome of gravid beef cows under moderate feed intake restriction. Trans. Anim. Sci. 5, S159-S163. doi: 10.1093/tas/txab172

79. Jeon S. J., Cunha F., Ma X., Martinez N., Vieira-Neto A., Daetz R., et al. (2016). Uterine microbiota and immune parameters associated with fever in dairy cows with metritis. PloS One 11, 1-17. doi: 10.1371/journal.pone.0165740

80. Jeon S. J., Cunha F., Vieira-Neto A., Bicalho R. C., Lima S., Bicalho M. L., et al. (2017). Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome 5, 109. doi: 10.1186/s40168-017-0328-9

81. Jeon S. J., Lima F. S., Vieira-Neto A., MaChado V. S., Lima S. F., Bicalho R. C., et al. (2018). Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Veterinary Microbiol. 214, 132-139. doi: 10.1016/j.vetmic.2017.12.022

82. Kaczorowski ?., Powierska-Czarny J., Wolko ?., Piotrowska-Cyplik A., Cyplik P., Czarny J. (2022). The influence of bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome. Molecules 27, 1-11. doi: 10.3390/molecules27061829

83. Kamada N., Chen G. Y., Inohara N., Núñez G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685-690. doi: 10.1038/ni.2608

84. Karstrup C. C., Klitgaard K., Jensen T. K., Agerholm J. S., Pedersen H. G. (2017). Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology 99, 41-47. doi: 10.1016/j.theriogenology.2017.05.013

85. Khalil A., Batool A., Arif S. (2022). Healthy cattle microbiome and dysbiosis in diseased phenotypes. Ruminants 2, 134-156. doi: 10.3390/ruminants2010009

86. Kim J. J., Quinn P. A., Fortier M. A. (1994). Ureaplasma diversum infection in vitro alters prostaglandin E2 and prostaglandin F(2a) production by bovine endometrial cells without affecting cell viability. Infection Immun. 62, 1528-1533. doi: 10.1128/iai.62.5.1528-1533.1994

87. Klein-Jöbstl D., Quijada N. M., Dzieciol M., Feldbacher B., Wagner M., Drillich M., et al. (2019). Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves’ gastrointestinal microbiota. PloS One 14, 1-18. doi: 10.1371/journal.pone.0220554

88. Knudsen L. R. V., Karstrup C. C., Pedersen H. G., Agerholm J. S., Jensen T. K., Klitgaard K. (2015a). Revisiting bovine pyometra-New insights into the disease using a culture-independent deep sequencing approach. Veterinary Microbiol. 175, 319-324. doi: 10.1016/j.vetmic.2014.12.006

89. Knudsen L. R. V., Karstrup C. C., Pedersen H. G., Angen Ø., Agerholm J. S., Rasmussen E. L., et al. (2015b). An investigation of the microbiota in uterine flush samples and endometrial biopsies from dairy cows during the first 7 weeks postpartum. Theriogenology 86, 642-650. doi: 10.1016/j.theriogenology.2016.02.016

90. Knuesel T., Mohajeri M. H. (2021). The role of the gut microbiota in the development and progression of major depressive and bipolar disorder. Nutrients 14(1), 37. doi: 10.3390/nu14010037

91. Kronfeld H., Kemper N., Hölzel C. S. (2022). Vaginal and uterine microbiomes during puerperium in dairy cows. Agric. (Switzerland) 12, 1-18. doi: 10.3390/agriculture12030405

92. Kruger Ben Shabat S., Sasson G., Doron-Faigenboim A., Durman T., Yaacoby S., Berg Miller M. E., et al. (2016). Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958-2972. doi: 10.1038/ismej.2016.62

93. Lavon Y., Ezra E., Leitner G., Wolfenson D. (2011). Association of conception rate with pattern and level of somatic cell count elevation relative to time of insemination in dairy cows. J. Dairy Sci. 94, 4538-4545. doi: 10.3168/jds.2011-4293

94. Lee C. N. (1993). Environmental stress effects on bovine reproduction. Veterinary Clinics North America: Food Anim. Pract. 9, 263-273. doi: 10.1016/S0749-0720(15)30645-9

95. Leroy J., Van Soom A., Opsomer G., Goovaerts I., Bols P. (2008). Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows*. Reprod. Domest. Anim. 43, 623-632. doi: 10.1111/j.1439-0531.2007.00961.x

96. Li F., Guan L. L. (2017). Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83, 1-16. doi: 10.1128/AEM.00061-17

97. Li F., Hitch T. C. A., Chen Y., Creevey C. J., Guan L. L. (2019). Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. Microbiome 7, 1-21. doi: 10.1186/s40168-019-0618-5

98. Lietaer L., Bogado Pascottini O., Hernandez-Sanabria E., Kerckhof F. M., Lacoere T., Boon N., et al. (2021). Low microbial biomass within the reproductive tract of mid-lactation dairy cows: A study approach. J. Dairy Sci. 104, 6159-6174. doi: 10.3168/jds.2020-19554

99. Lima S. F., de Souza Bicalho M. L., Bicalho R. C. (2019). The Bos taurus maternal microbiome: Role in determining the progeny early-life upper respiratory tract microbiome and health. PloS One 14, 1-20. doi: 10.1371/journal.pone.0208014

100. Lima S. F., Teixeira A. G. V., Lima F. S., Ganda E. K., Higgins C. H., Oikonomou G., et al. (2017). The bovine colostrum microbiome and its association with clinical mastitis. J. Dairy Sci. 100, 3031-3042. doi: 10.3168/jds.2016-11604

101. Lindheim L., Bashir M., Münzker J., Trummer C., Zachhuber V., Leber B., et al. (2017). Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PloS One 12, 1-20. doi: 10.1371/journal.pone.0168390

102. Lonergan P., Fair T., Forde N., Rizos D. (2016). Embryo development in dairy cattle. Theriogenology 86, 270-277. doi: 10.1016/j.theriogenology.2016.04.040

103. Lucy M. (2007). Fertility in high-producing dairy cows: Reasons for decline and corrective strategies for sustainable improvement. Reprod. Domest. Ruminants 6, 237-254. doi: 10.5661/RDR-VI-237

104. Luecke S. M., Webb E. M., Dahlen C. R., Reynolds L. P., Amat S. (2022). Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.1029128

105. Machado V. S., Oikonomou G., Bicalho M. L. S., Knauer W. A., Gilbert R., Bicalho R. C. (2012). Investigation of postpartum dairy cows’ uterine microbial diversity using metagenomic pyrosequencing of the 16S rRNA gene. Veterinary Microbiol. 159, 460-469. doi: 10.1016/j.vetmic.2012.04.033

106. Markle J. G. M., Frank D. N., Mortin-Toth S., Robertson C. E., Feazel L. M., Rolle-Kampczyk U., et al. (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Sci. (New York N.Y.) 339, 1084-1088. doi: 10.1126/science.1233521

107. Marques T. C., Monteiro H. F., Melo D. B., Coelho W. M., Salman S., Marques L. R., et al. (2023). Effect of rumen-protected choline on dairy cows’ metabolism, immunity, lactation performance, and vaginal discharge microbiome. J. Dairy Sci. 107, 2864-2882. doi: 10.3168/jds.2023-23850

108. McClure T. J. (1968). Malnutrition and infertility of cattle in Australia and New Zealand. Aust. Veterinary J. 44, 134-138. doi: 10.1111/j.1751-0813.1968.tb09055.x

109. Meira E. B. S., Ellington-Lawrence R. D., Silva J. C. C., Higgins C. H., Linwood R., Rodrigues M. X., et al. (2020). Recombinant protein subunit vaccine reduces puerperal metritis incidence and modulates the genital tract microbiome. J. Dairy Sci. 103, 7364-7376. doi: 10.3168/jds.2019-17006

110. Mekibib B., Belachew M., Asrade B., Badada G., Abebe R. (2024). Incidence of uterine infections, major bacteria and antimicrobial resistance in postpartum dairy cows in southern Ethiopia. BMC Microbiol. 24, 4. doi: 10.1186/s12866-023-03160-w

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
29/10/2025

Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono

I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.

 
 

Formazione Settore Agro-Zootecnico

 

 
Formazione a distanza abbinata a SUMMA

SPC-sviluppo-professionale-continuo