BibliografiaTORNA INDIETRO
1. Urie NJ, Lombard JE, Shivley CB, Kopral CA, Adams AE, Earleywine TJ, et
al. Preweaned heifer management on US dairy operations: Part V. Factors
associated with morbidity and mortality in preweaned dairy heifer calves. J
Dairy Sci. (2018) 101:9229–44. doi: 10.3168/jds.2017-14019
2. Gomez DE,Weese JS. Viral enteritis in calves. Can Vet J. (2017) 58:1267–74.
3. Gomez DE, Arroyo LG, Costa MC, Viel L, Weese JS. Characterization of the
Fecal BacterialMicrobiota of Healthy and Diarrheic Dairy Calves. J Vet Intern
Med. (2017) 31:928–39. doi: 10.1111/jvim.14695
4. Youanes YD, Herdt TH. Changes in small intestinal morphology and
flora associated with decreased energy digestibility in calves with naturally
occurring diarrhea. Am J Vet Res. (1987) 48:719–25.
5. Isaacson RE, Moon HW, Schneider RA. Distribution and virulence of
Escherichia coli in the small intestines of calves with and without diarrhea.
Am J Vet Res. (1978) 39:1750–5.
6. Smith T, Orcutt ML. The bacteriology of the intestinal tract of young calves
with special reference to the early diarrhea (“scours”). J Exp Med. (1925)
41:89–106. doi: 10.1084/jem.41.1.89
7. Oikonomou G, Teixeira AGV, Foditsch C, Bicalho ML, Machado VS,
Bicalho RC. Fecal microbial diversity in pre-weaned dairy calves as
described by pyrosequencing of metagenomic 16S rDNA. Associations
of Faecalibacterium species with health and growth. PLoS ONE. (2013)
8:e63157. doi: 10.1371/journal.pone.0063157
8. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding
of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis.
(2016) 22:1137–50. doi: 10.1097/MIB.0000000000000750
9. Henson MA, Phalak P. Microbiota dysbiosis in inflammatory bowel diseases:
in silico investigation of the oxygen hypothesis. BMC Syst Biol. (2017)
11:145. doi: 10.1186/s12918-017-0522-1
10. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease.
Semin Immunopathol. (2015) 37:47–55. doi: 10.1007/s00281-014-0454-4
11. Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen
hypothesis. ISME J. (2013) 7:1256–61. doi: 10.1038/ismej.2013.80
12. Trefz FM, Constable PD, Lorenz I. Quantitative physicochemical analysis
of acid-base balance and clinical utility of anion gap and strong ion gap
in 806 neonatal calves with diarrhea. J Vet Intern Med. (2015) 29:678–
87. doi: 10.1111/jvim.12556
13. Omole OO, Nappert G, Naylor JM, Zello GA. Both L- and D-lactate
contribute to metabolic acidosis in diarrheic calves. J Nutr. (2001) 131:2128–
31. doi: 10.1093/jn/131.8.2128
14. Renaud DL, Buss L,Wilms JN, SteeleMA. Technical note: Is fecal consistency
scoring an accurate measure of fecal dry matter in dairy calves? J Dairy Sci.
(2020) 103:10709–14. doi: 10.3168/jds.2020-18907
15. Tyma JF, Epstein KL, Whitfield-Cargile CM, Cohen ND, Giguère S.
Investigation of effects of omeprazole on the fecal and gastric microbiota of
healthy adult horses. Am J Vet Res. (2019) 80:79–86. doi: 10.2460/ajvr.80.1.79
16. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
et al. Introducing mothur: open-source, platform-independent, communitysupported
software for describing and comparing microbial communities.
Appl Environ Microbiol. (2009) 75:7537–41. doi: 10.1128/AEM.01541-09
17. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development
of a dual-index sequencing strategy and curation pipeline for analyzing
amplicon sequence data on the MiSeq Illumina sequencing platform. Appl
Environ Microbiol. (2013) 79:5112–20. doi: 10.1128/AEM.01043-13
18. Good IJ. The population frequencies of species and the
estimation of population parameters. Biometrika. (1953) 40:237–
264. doi: 10.1093/biomet/40.3-4.237
19. Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci
Nat. (1908) 44:223–70.
20. Yue JC, Clayton MK. A Similarity Measure Based on Species Proportions.
Commun Stat Methods. (2005) 34:2123–31. doi: 10.1080/STA-200066418
21. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures:
generative models for microbial metagenomics. PLoS ONE. (2012)
7:e30126. doi: 10.1371/journal.pone.0030126
22. Benjamini, Yoav and YH. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 1:289–
300. doi: 10.1111/j.2517-6161.1995.tb02031.x
23. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al.
Metagenomic biomarker discovery and explanation. Genome Biol. (2011)
12:R60. doi: 10.1186/gb-2011-12-6-r60
24. Arroyo LG, Rossi L, Santos BP, Gomez DE, Surette MG, Costa MC. Luminal
and Mucosal Microbiota of the Cecum and Large Colon of Healthy and
Diarrheic Horses. Animals. (2020) 10:1403. doi: 10.3390/ani10081403
25. Suchodolski JS. Diagnosis and interpretation of intestinal dysbiosis in dogs
and cats. Vet J. (2016) 215:30–7. doi: 10.1016/j.tvjl.2016.04.011
26. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature
of dysbiosis in gut microbiota. Trends Biotechnol. (2015)
33:496–503. doi: 10.1016/j.tibtech.2015.06.011
27. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria
expansion: a microbial signature of epithelial dysfunction. Curr Opin
Microbiol. (2017) 39:1–6. doi: 10.1016/j.mib.2017.07.003
28. Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance
and the strategies pathogens use to overcome them.Mucosal Immunol. (2019)
12:1–9. doi: 10.1038/s41385-018-0053-0
29. Ilhan ZE, Marcus AK, Kang DW, Rittmann BE, Krajmalnik-Brown R. pHMediatedMicrobial
andMetabolic Interactions in Fecal Enrichment Cultures.
mSphere. (2017) 2:1–12. doi: 10.1128/mSphere.00047-17
30. Milinovich GJ, Klieve A V, Pollitt CC, Trott DJ. Microbial events in the
hindgut during carbohydrate-induced equine laminitis. Vet Clin North Am
Equine Pract. (2010) 26:79–94. doi: 10.1016/j.cveq.2010.01.007
31. Milinovich GJ, Burrell PC, Pollitt CC, Klieve A V, Blackall LL, Ouwerkerk D,
et al. Microbial ecology of the equine hindgut during oligofructose-induced
laminitis. ISME J. (2008) 2:1089–100. doi: 10.1038/ismej.2008.67
32. Bailey SR, Marr CM, Elliott J. Current research and theories on the
pathogenesis of acute laminitis in the horse. Vet J. (2004) 167:129–
42. doi: 10.1016/S1090-0233(03)00120-5
33. Bailey SR, Menzies-Gow NJ, Marr CM, Elliott J. The effects of vasoactive
amines found in the equine hindgut on digital blood flow in the normal horse.
Equine Vet J. (2004) 36:267–72. doi: 10.2746/0425164044877297
34. Nagaraja TG, Titgemeyer EC. Ruminal acidosis in beef cattle: the current
microbiological and nutritional outlook. J Dairy Sci. (2007) 90 Suppl 1:E17–
38. doi: 10.3168/jds.2006-478
35. Garcia J, Pempek J, HengyM, Hinds A,Diaz-CamposD,Habing G. Prevalence
and predictors of bacteremia in dairy calves with diarrhea. J Dairy Sci. (2021)
105:807–17. doi: 10.3168/jds.2020-19819
36. Fecteau G, Van Metre DC, Paré J, Smith BP, Higgins R, Holmberg CA, et al.
Bacteriological culture of blood from critically ill neonatal calves. Can Vet J.
(1997) 38:95–100.
37. Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia
in diarrheic calves. J Vet Intern Med. (1999) 13:81–
8. doi: 10.1111/j.1939-1676.1999.tb01134.x
38. Gomez DE, Rodriguez-Lecompte JC, Lofstedt J, Arroyo LG, Nino-Fong R,
McClure JT. Detection of endotoxin in plasma of hospitalized diarrheic calves.
J Vet Emerg Crit Care (San Antonio). (2019) 29:166–72. doi: 10.1111/vec.12815
39. Gentile A, Sconza S, Lorenz I, Otranto G, Rademacher G, Famigli-Bergamini
P, et al. D-Lactic acidosis in calves as a consequence of experimentally
induced ruminal acidosis. J Vet Med A Physiol Pathol Clin Med. (2004)
51:64–70. doi: 10.1111/j.1439-0442.2004.00600.x
40. Gomez DE, Lofstedt J, Stämpfli HR, Wichtel M, Muirhead T, McClure JT.
Contribution of unmeasured anions to acid-base disorders and its association
with altered demeanor in 264 calves with neonatal diarrhea. J Vet Intern Med.
(2013) 27:1604–12. doi: 10.1111/jvim.12193
41. Lorenz I. Investigations on the influence of serum D-lactate levels on
clinical signs in calves with metabolic acidosis. Vet J. (2004) 168:323–
7. doi: 10.1016/j.tvjl.2003.10.021
42. Stanciu S, De Silva A. Metabolic acidosis in short bowel
syndrome: think D-lactic acid acidosis. BMJ Case Rep. (2018)
2018:1–3. doi: 10.1136/bcr-2018-224221
43. Jain A, Jhinger K, Bellas J. Recurrent Encephalopathy and Severe Anion Gap
Metabolic Acidosis in a Patient with Short Bowel: It Is D-Lactic Acidosis. Case
Rep Gastroenterol. (2021) 15:92–6. doi: 10.1159/000509952
44. Ugidos-Rodríguez S, Matallana-González MC, Sánchez-Mata MC. Lactose
malabsorption and intolerance: a review. Food Funct. (2018) 9:4056–
68. doi: 10.1039/C8FO00555A
45. Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be
constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr.
(2019) 110:273–9. doi: 10.1093/ajcn/nqz104
46. Foster DM, Smith GW. Pathophysiology of diarrhea in calves. Vet Clin
North Am Food Anim Pract. (2009) 25:13–36, xi. doi: 10.1016/j.cvfa.2008.
10.013
47. Nappert G, Hamilton D, Petrie L, Naylor JM. Determination of lactose
and xylose malabsorption in preruminant diarrheic calves. Can J Vet Res.
(1993) 57:152–8.
48. Gutzwiller A, Blum JW. Effects of oral lactose and xylose loads on blood
glucose, galactose, xylose, and insulin values in healthy calves and calves with
diarrhea. Am J Vet Res. (1996) 57:560–3.
49. Hubbell JA, Muir WW, Robertson JT, Sams RA. Cardiovascular
effects of intravenous sodium penicillin, sodium cefazolin, and
sodium citrate in awake and anesthetized horses. Vet Surg. (1987)
16:245–50. doi: 10.1111/j.1532-950X.1987.tb00947.x
50. He T, Venema K, Priebe MG, Welling GW, Brummer R-JM, Vonk RJ. The
role of colonic metabolism in lactose intolerance. Eur J Clin Invest. (2008)
38:541–7. doi: 10.1111/j.1365-2362.2008.01966.x
51. Song Y, Malmuthuge N, Li F, Guan LL. Colostrum feeding shapes the hindgut
microbiota of dairy calves during the first 12 h of life. FEMS Microbiol Ecol.
(2019) 95:1–12. doi: 10.1093/femsec/fiy203
52. Ma T, O’Hara E, Song Y, Fischer AJ, He Z, Steele MA, et al. Altered
mucosa-associated microbiota in the ileum and colon of neonatal calves in
response to delayed first colostrum feeding. J Dairy Sci. (2019) 102:7073–
86. doi: 10.3168/jds.2018-16130
53. Hang BPT, Wredle E, Dicksved J. Analysis of the developing gut microbiota
in young dairy calves-impact of colostrum microbiota and gut disturbances.
Trop Anim Health Prod. (2020) 53:50. doi: 10.1007/s11250-020-02535-9
54. Vadopalas L, Zokaityte E, Zavistanaviciute P, Gruzauskas R, Starkute V,
Mockus E, et al. Supplement Based on Fermented Milk Permeate for
Feeding Newborn Calves: Influence on Blood, Growth Performance,
and Faecal Parameters, including Microbiota, Volatile Compounds,
and Fatty and Organic Acid Profiles. Animals (Basels). (2021)
11:2544. doi: 10.3390/ani11092544
55. Weese JS, JelinskiM. Assessment of the FecalMicrobiota in Beef Calves. J Vet
Intern Med. (2017) 31:176–85. doi: 10.1111/jvim.14611
56. Gomez DE, Arroyo LG, Poljak Z, Viel L, Weese JS. Implementation of an
algorithm for selection of antimicrobial therapy for diarrhoeic calves: Impact
on antimicrobial treatment rates, health and faecal microbiota. Vet J. (2017)
226:15–25. doi: 10.1016/j.tvjl.2017.06.009
57. Gomez DE, Galvão KN, Rodriguez-Lecompte JC, Costa MC. The Cattle
Microbiota and the Immune System: An Evolving Field. Vet Clin North Am
Food Anim Pract. (2019) 35:485–505. doi: 10.1016/j.cvfa.2019.08.002
58. Chase CCL. Enteric Immunity: Happy Gut, Healthy Animal. Vet Clin North
Am Food Anim Pract. (2018) 34:1–18. doi: 10.1016/j.cvfa.2017.10.006
59. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology
of the neonatal gastrointestinal tract. Am J Clin Nutr. (1999)
69:1035S−45S. doi: 10.1093/ajcn/69.5.1035s
60. Klein-Jöbstl D, Schornsteiner E, Mann E, Wagner M, Drillich M,
Schmitz-Esser S. Pyrosequencing reveals diverse fecal microbiota in
Simmental calves during early development. Front Microbiol. (2014)
5:622. doi: 10.3389/fmicb.2014.00622
61. Alipour MJ, Jalanka J, Pessa-Morikawa T, Kokkonen T, Satokari R, Hynönen
U, et al. The composition of the perinatal intestinal microbiota in cattle. Sci
Rep. (2018) 8:10437. doi: 10.1038/s41598-018-28733-y
62. Lukás F, Koppová I, Kudrna V, Kopecný J. Postnatal development of bacterial
population in the gastrointestinal tract of calves. Folia Microbiol (Praha).
(2007) 52:99–104. doi: 10.1007/BF02932147
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.
Copyright © 2022 Gomez, Li, Goetz, MacNicol, Gamsjaeger and Renaud. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono
I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.