Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Impatto ambientale delle parassitosi nell’allevamento ovino



1. FAO. 2022. ‘GLEAM v3 Dashboard’. Shiny Apps. Retrieved 26 February 2023 (

2. Bhatt, Akul, and Bassim Abbassi. 2021. ‘Review of Environmental Performance of Sheep Farming Using Life Cycle Assessment’. J. Clean Prod. 293:126192. doi: 10.1016/j.jclepro.2021.126192.

3. Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld, H. 2013. Greenhouse Gas Emissions from Ruminant Supply Chains – a Global Life Cycle Assessment. Rome: Food and Agriculture Organization of the United Nations.

4. Arsenos G., Vouraki S., Ragkos A., Theodoridis A. 2021. ‘Trends and Challenges for Sustainable Development of Sheep and Goat Systems’. Pp. 13–33 in. CIHEAM (Options Méditerranéennes: A) Bari, Italy.

5. FAO. 2013. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. Rome.

6. Broom, D. M. 2019. ‘Animal Welfare Complementing or Conflicting with Other Sustainability Issues’. Appl. Anim. Behav. Sci. 219:104829.

7. Pinillos, R. García, M. C. Appleby, X. Manteca, F. Scott-Park, C. Smith, and A. Velarde. 2016. ‘One Welfare - a Platform for Improving Human and Animal Welfare’. Vet. Rec. 179(16):412–13.

8. Özkan, Ş., F. Teillard, B. Lindsay, H. Montgomery, A. Rota, P. Gerber, Dhingra M., and A. Mottet. 2022. The Role of Animal Health in National Climate Commitments. Rome: FAO.

9. EFSA. 2014. ‘Scientific Opinion on the Welfare Risks Related to the Farming of Sheep for Wool, Meat and Milk Production. EFSA Panel on Animal Health and Welfare (AHAW)’. EFSA Journal 12(12).

10. Drewe F., Lee C., Fisher A. 2017. Advances in Sheep Welfare. Woodhead publishing.

11. Fox NJ, Smith LA, Houdijk JGM, Athanasiadou S, Hutchings MR. 2018. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 48(13):1017-21.

12. Houdijk, J. G. M., Tolkamp B. J., Rooke J. A., Hutchings M. R. 2017. 'Animal Health and Greenhouse Gas Intensity: The Paradox of Periparturient Parasitism'. Int. J. Parasitol. 47(10-11):633-41.

13. Charlier J., Van der Voort M., Hogeveen H., Vercruysse J. 2012. ParaCalc®--a novel tool to evaluate the economic importance of worm infections on the dairy farm. Vet. Parasitol. 184(2-4):204-11.

14. Nieuwhof G.J., Bishop S. 2005. Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. An. Sci. 81. 23-9.

15. Kyriazakis I I, Tolkamp BJ, Hutchings MR. Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim. Behav. 1998 Aug;56(2):265-74

16. Sutherland I., Scott I. 2010. Gastrointestinal nematodes of sheep and cattle: biology and control. Wiley-Blackwell.

17. Lima P.M.T., Crouzoulon P., Sanches T.P., Zabré G., Kabore A., Niderkorn V., Hoste H., Amarante A.F.T.D., Costa-Júnior L.M., Abdalla A.L., Louvandini H. 2019. Effects of Acacia mearnsii supplementation on nutrition, parasitological, blood parameters and methane emissions in Santa Inês sheep infected with Trichostrongylus colubriformis and Haemonchus contortus. Exp Parasitol. 207:107777.

18. Fernandes M.A., Lima P.M.T., do Amarante A. F. T., Abdalla A.L., Louvandini H. 2022. Hematological, biochemical alterations and methane production in sheep submitted to mixed infection of Haemonchus contortus and Trichostrongylus colubriformis. Small Rum. Res. 216, 106798.

19. Corrêa P.S., Mendes L.W., Lemos L.N., Sampaio A.C.K., Issakowicz J., McManus C.M., Tsai S.M., Faciola A.P., Abdalla A.L., Louvandini H. 2021. The effect of Haemonchus contortus and Trichostrongylus colubriforms infection on the ruminal microbiome of lambs. Exp Parasitol. 231:108175. doi: 10.1016/j.exppara.2021.108175.

20. Mwangi P. M., Eckard R., Gluecks I., Merbold L., Mulat D. G., Gakige J., Pinares-Patino C.S., Marquardt S. 2023. Impact of Haemonchus contortus infection on feed intake, digestion, liveweight gain, and enteric methane emission from Red Maasai and Dorper sheep. Front. An. Sci. 4. 10.3389/fanim.2023.1212194  

21. Sykes, A., Coop, R. 1977. Intake and utilization of food by growing sheep with abomasal damage caused by daily dosing with Ostertagia circumcincta larvae. J. Agr. Sci. 88(3), 671-7.

22. Coop, R.L., A.R. Sykes and K.W. Angus. 1982. The effect of three levels of intake of Ostertagia Circumcincta Larvae on growth rate, food intake and body composition of growing lambs. J. Agric. Sci., 98: 247-55.

23. Kyriazakis I.., Anderson D.H., Coop R.L., Jackson F. 1996.  The pathophysiology and development of immunity during long-term subclinical infection with Trichostrongylus colubriformis of sheep receiving different nutritional treatments. Vet. Parasitol. 65(1-2):41-54.

24. Hoste H., Torres-Acosta J.F., Quijada J., Chan-Perez I., Dakheel M.M., Kommuru D.S., Mueller-Harvey I., Terrill T.H. 2016. Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. Adv Parasitol. 93:239-351.

25. Moraes L. E., Strathe A. B., Fadel J. G., Casper D. P., Kebreab E. 2014. Prediction of enteric methane emissions from cattle. Global Change Biol. 20 (7), 2140–8.

26. Stergiadis S., Zou C., Chen X., Allen M., Wills D., Yan T. 2016.Equations to predict methane emissions from cows fed at maintenance energy level in pasture-based systems. Agr. Ecos. Env. 220, 8-20.

27. Li R.W., Li W., Sun J., Yu P., Baldwin R.L., Urban J.F. 2016. The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Sci Rep. 2016. 6:20606.

28. Zaiss M.M., Harris N.L. 2016 Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38(1):5-11.

29. Buddle B.M., Denis M., Attwood G.T., Altermann E.., Janssen P.H., Ronimus R.S., Pinares-Patiño C.S., Muetzel S., Neil Wedlock D. 2011. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet. J. 188(1):11-7.

30. Thauer R.K., Kaster A.K., Seedorf H., Buckel W., Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6(8):579-91.

31. Janssen P.H., Kirs M. 2008. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74(12):3619-25.

32. Kenyon F., Dick J.M., Smith R.I., Coulter D.G., McBean D., Skuce P.J. 2013. Reduction in Greenhouse Gas Emissions Associated with Worm Control in Lambs. Agriculture. 3, 271-84.

33. Rose H. 2015. GLOWORM-FL: a simulation model of the effects of climate and climate change on the free-living stages of gastro-intestinal nematode parasites of ruminants. Ecol. Model. 297:232–45

34. Ezenwa V.O., Civitello D.J., Barton B.T., Becker D.J., Brenn-White M., Classen A.T., Deem S.L., Johnson Z.E., Kutz S., Malishev M., Penczykowski R.M., Preston D.L., Vannatta J.T., Koltz A.M. 2020.  Infectious Diseases, Livestock, and Climate: A Vicious Cycle? Trends Ecol Evol. 35(11):959-62.



Abbonati per accedere

Dal web internazionale

Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono

I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.


Formazione Settore Agro-Zootecnico


Formazione a distanza abbinata a SUMMA