Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Il benessere, uno strumento per migliorare le performance del giovane bestiame



1. Atashi H, Asaadi A, Hostens M. Association between age at first calving and lactation performance, lactation curve, calving interval, calf birth weight, and dystocia in Holstein dairy cows. PLoS One. 2021;16(1):e0244825.

2. Beaver A, Meagher RK, von Keyserlingk MAG. Invited review: a systematic review of the effects of early separation on dairy cow and calf health. J. Dairy Sci. 2019;102(7):5784-5810.

3. Bica GS, Pinheiro Machado Filho LC, Teixeira DL et coll. Time of grain supplementation and social dominance modify feeding behavior of heifers in rotational grazing systems. Front. Vet. Sci. 2020;7:61.

4. Bonizzi S, Gislon G, Brasca M et coll. Air quality, management practices and calf health in italian dairy cattle farms. Animals (Basel). 2022;12(17):2286.

5. Brunauer M, Roch FF, Conrady B. Prevalence of worldwide neonatal calf diarrhoea caused by bovine rotavirus in combination with bovine coronavirus, Escherichia coli K99 and Cryptosporidium spp.: a meta-analysis. Animals (Basel). 2021;11(4):1014.

6. Cantor MC, Costa JHC. Daily behavioral measures recorded by precision technology devices may indicate bovine respiratory disease status in preweaned dairy calves. J. Dairy Sci. 2022;105(7):6070-6082.

7. Costa JHC, Cantor MC, Neave HW. Symposium review: precision technologies for dairy calves and management applications. J. Dairy Sci. 2021;104(1):1203-1219.

8. De Vries T. Social housing of dairy calves: why, when and how? Proc. World Buiatrics Congress, Madrid 2022.

9. Dias J, Marcondes MI, Motta de Souza S et coll. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Appl. Environ. Microbiol. 2018;84(9):e02675-17.

10. Díaz P, Varcasia A, Pipia AP et coll. Molecular characterisation and risk factor analysis of Cryptosporidium spp. in calves from Italy. Parasitol. Res. 2018;117(10):3081-3090.

11. Gilbert MA, Van den Borne JJGC, Berends H et coll. A titration approach to identify the capacity for starch digestion in milk-fed calves. Animal. 2015;9(2):249-257.

12. Guo Y, He D, Chai L. A machine vision-based method for monitoring sceneinteractive behaviors of dairy calf. Animals. 2020;10(2):190.

13. Halbach C. Pre-weaning replacement heifer housing and management to maximize growth and health. Proc. Word Buiatrics Congress, Madrid 2022.

14. Hamidi D, Grinnell NA, Komainda M et coll. Heifers don’t care: no evidence of negative impact on animal welfare of growing heifers when using virtual fences compared to physical fences for grazing. Animal. 2022;16(9):100614.

15. Hammon HM, Liermann W, Frieten D et coll. Review: importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal. 2020;14(S1):s133-s143.

16. Handcock RC, Lopez-Villalobos N, Back PJ et coll. Growth, milk production, reproductive performance, and stayability of dairy heifers born from 2-year-old or mixed-age dams. J. Dairy Sci. 2021;104(11):11738-11746.

17. Hawkins A, Burdine KH, Amaral-Phillips DM et coll. Effects of housing system on dairy heifer replacement cost from birth to calving: evaluating costs of confinement, dry-lot, and pasture-based systems and their impact on total rearing investment. Front. Vet. Sci. 2020;7:625.

18. Hayes CJ, McAloon CG, Kelly ET et coll. The effect of dairy heifer pre-breeding growth rate on first lactation milk yield in spring-calving, pasture-based herds. Animal. 2021;15(3):100169.

19. Hötzel MJ, Cardoso CS, Roslindo A et coll. Citizens’ views on the practices of zerograzing and cow-calf separation in the dairy industry: does providing information increase acceptability? J. Dairy Sci. 2017;100(5):4150-4160.

20. Lago A, McGuirk SM, Bennett TB et coll. Calf respiratory disease and pen microenvironments in naturally ventilated calf barns in winter. J. Dairy Sci. 2006;89(10):4014-4025. Ù

21. Ly LH, Ryan EB, Weary DM. Public attitudes toward dairy farm practices and technology related to milk production. PLoS One. 2021;16(4):e0250850.

22. Morrison J, Renaud DL, Churchill KJ et coll. Predicting morbidity and mortality using automated milk feeders: a scoping review. J. Dairy Sci. 2021;104(6):7177-7194.

23. Ollivett TL. How does housing influence bovine respiratory disease in dairy and veal calves? Vet. Clin. North Am. Food Anim. Pract. 2020;36(2):385-398.

24. Palczynski LJ, Bleach ECL, Brennan ML et coll. Appropriate dairy calf feeding from birth to weaning: “It’s an investment for the future”. Animals (Basel). 2020;10(1):116.

25. Puppel K, Golebiewski M, Konopka K et coll. Relationship between the quality of colostrum and the formation of microflora in the digestive tract of calves. Animals (Basel). 2020;10(8):1293.

26. Rodier S, Rondi Q, Eppinga M et coll. Cryptosporidiose bovine : avancées sur la prévention de la maladie. Point Vét. 2021;52(417):70-75. 27. Schmitt E. Relations entre le bien-être des vaches laitières et leur logement. Point Vét. 2022;53(434):66-71.

28. Schmitt E. Alimentation et bien-être des vaches laitières. 2022;53(431-432):74-79.

29. Schwaiger K, Storch J, Bauer C et coll. Development of selected bacterial groups of the rectal microbiota of healthy calves during the first week postpartum. J. Appl. Microbiol. 2020;128(2):366-375.

30. Svensson C, Liberg P. The effect of group size on health and growth rate of Swedish dairy calves housed in pens with automatic milk-feeders. Prev. Vet. Med. 2006;73(1):43-53.

31. Urie NJ, Lombard JE, Shivley CB et coll. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018;101(10):9229-9244.

32. Von Keyserlingk MA, Brusius L, Weary DM. Competition for teats and feeding behavior by group-housed dairy calves. J. Dairy Sci. 2004;87(12):4190-4194.

Abbonati per accedere

Dal web internazionale

Eradicazione di M. hyopneumoniae nel suino: gli strumenti ci sono

I metodi storicamente impiegati per ridurre l’incidenza delle infezioni da M. hyopneumoniae non sembrano attualmente funzionare adeguatamente. I programmi di controllo per questo microrganismo si dividono in due macrocategorie: i programmi che prevedono l’eradicazione dell’agente patogeno e quelli che non la prevedono; a quest’ultima categoria appartengono le strategie che si basano su tre concetti: gestione, prevenzione e trattamento.


Formazione Settore Agro-Zootecnico


Formazione a distanza abbinata a SUMMA