immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

RNA messaggero come biomarker dell’infezione da Virus Respiratorio Sinciziale Bovino nel sangue intero di vitelli da latte

Bibliografia

1. Compton, C. W. R. et al. Invited review: a systematic literature review and meta-analysis of mortality and culling in dairy cattle.

J. Dairy Sci. 100(1), 1–16 (2017).

2. Valarcher, J.-F. & Taylor, G. Bovine respiratory syncytial virus infection. Vet Res. 38(2), 153–180 (2007).

3. Taylor, J. D., Fulton, R. W., Lehenbauer, T. W., Step, D. L. & Confer, A. W. The epidemiology of bovine respiratory disease: what is

the evidence for preventive measures?. Can. Vet. J. 51(12), 1351–1359 (2010).

4. Johnston, D. et al. Experimental challenge with bovine respiratory syncytial virus in dairy calves: bronchial lymph node transcriptome response. Sci. Rep. 9(1), 14736 (2019).

5. Tizioto, P. C. et al. Immunological response to single pathogen challenge with agents of the bovine respiratory disease complex:

an RNA-sequence analysis of the bronchial lymph node transcriptome. PLoS ONE 10(6), e0131459 (2015).

6. Behura, S. K. et al. Tissue tropism in host transcriptional response to members of the Bovine Respiratory Disease Complex. Sci.

Rep. 7, 17938 (2017).

7. Stoot, L. J. et al. Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review.

Conserv. Physiol. 2(1), cou011 (2014).

8. Scott, M. A. et al. Whole blood transcriptomic analysis of beef cattle at arrival identifies potential predictive molecules and mechanisms that indicate animals that naturally resist bovine respiratory disease. PLoS ONE 15(1), e0227507 (2020).

9. Gershwin, L. J. et al. Single pathogen challenge with agents of the bovine respiratory disease complex. PLoS ONE 10(11), e0142479

(2015).

10. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12 (2011).

11. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

12. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.Rproject.org.

13. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140 (2010).

14. Robinson, M. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol

11, R25 (2010).

15. Yu, G., Wang, L., Han, Y. & He, Q. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J.

Integr. Biol. 16(5), 284–287 (2012).

16. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics

resources. Nat. Protoc. 4, 44–57 (2008).

17. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional

analysis of large gene lists. Nucl. Acids Res. 37, 1–13 (2009).

18. Sun, H.-Z. et al. Longitudinal blood transcriptomic analysis to identify molecular regulatory patterns of bovine respiratory disease

in beef cattle. Genomics 112(6), 3968–3977 (2020).

19. Blakebrough-Hall, C., Dona, A., D’occhio, M. J., McMeniman, J. & González, L. A. Diagnosis of Bovine Respiratory Disease in

feedlot cattle using blood 1H NMR metabolomics. Sci. Rep. 10(1), 115 (2020).

20. Salem, E. et al. Pathogenesis, host innate immune response, and aerosol transmission of influenza D virus in Cattle. J. Virol. 93(7),

e01853-e1918 (2019).

21. Lee, J.-U. et al. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir. Res. 18(1), 3 (2017).

22. Köck, K. et al. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein

kinase C-mediated internalization. J. Biol. Chem. 285(15), 11336–11347 (2010).

23. Wong, L. Y., Cheung, B. M., Li, Y. Y. & Tang, F. Adrenomedullin is both proinflammatory and antiinflammatory: its effects on gene

expression and secretion of cytokines and macrophage migration inhibitory factor in NR8383 macrophage cell line. Endocrinology

146(3), 1321–1327 (2005).

24. Xue, B. et al. ISG12a restricts hepatitis C virus infection through the ubiquitination-dependent degradation pathway. J. Virol.

90(15), 6832–6845 (2016).

25. Lin, P. et al. Clinical significance of COL1A1 and COL1A2 expression levels in hypopharyngeal squamous cell carcinoma. Oncol

Lett. 20(1), 803–809 (2020).

26. Tirumurugaan, K. G. et al. RNAseq reveals the contribution of interferon stimulated genes to the increased host defense and

decreased PPR viral replication in Cattle. Viruses 12(4), 463 (2020).

27. Dzimianski, J. V., Scholte, F. E. M., Bergeron, É. & Pegan, S. D. ISG15: it’s complicated. J. Mol. Biol. 431(21), 4203–4216 (2019).

28. Li, W. et al. Transcriptome analysis reveals differential immune related genes expression in bovine viral diarrhea virus-2 infected

goat peripheral blood mononuclear cells (PBMCs). BMC Genom. 20(1), 516 (2019).

29. Perng, Y.-C. & Lenschow, D. J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16(7), 423–439 (2018).

30. Zhou, Z. et al. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 409(2), 175–188 (2011).

31. Fensterl, V. & Sen, G. C. Interferon-induced ifit proteins: their role in viral pathogenesis. J. Virol. 89(5), 2462–2468 (2015).

32. Zhao, X., Li, J., Winkler, C. A., An, P. & Guo, J.-T. IFITM genes, variants, and their roles in the control and pathogenesis of viral

infections. Front Microbiol. 8(9), 3228 (2019).

33. Heinonen, S. et al. Immune profiles provide insights into respiratory syncytial virus disease severity in young children. Sci. Transl.

Med. 12(540), eaaw0268 (2020).

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
07/10/2021

Livelli di ingestione della scrofa e prestazioni dei suinetti

I progressi nella genetica assieme alle migliorate pratiche di gestione dell’allevamento hanno portato a un aumento significativo delle dimensioni delle nidiate di suini; tuttavia, ciò è stato accompagnato da un aumento del numero di suinetti che presentano un basso peso alla nascita e di quelli potenzialmente non vitali, in gran parte a causa del ritardo della crescita intrauterina. Ciò si riflette anche in bassi pesi allo svezzamento e performance produttive inferiori.

 
 

Formazione Settore Agro-Zootecnico

 

 
Formazione a distanza abbinata a SUMMA

SPC-sviluppo-professionale-continuo