immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Variabilità genetica dei Norovirus GII nella popolazione suina dell’Italia nord-orientale

Bibliografia

1. Koo, H. L., Ajami, N., Atmar, R. L. & DuPont, H. L. Noroviruses: The leading cause of gastroenteritis worldwide. Discov Med 10,

61–70 (2010).

2. Knipe, D. M. & Howley, P. In Fields Virology. 502–608 (Wolters Kluwer, Philadelphia, 2015).

3. Chhabra, P. et al. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol 100, 1393–1406 (2019).

4. Robilotti, E., Deresinski, S. & Pinsky, B. A. Norovirus. Clinical microbiology reviews 28, 134–164 (2015).

5. van Beek, J. et al. Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet

network. The Lancet Infectious Diseases 18, 545–553 (2018).

6. Oliver, S. L., Asobayire, E., Dastjerdi, A. M. & Bridger, J. C. Genomic characterization of the unclassified bovine enteric virus

Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae. Virology 350, 240–250 (2006).

7. Mattison, K. et al. Human Noroviruses in Swine and Cattle. Emerging infectious diseases 13, 1184–1188 (2007).

8. Poel, W. H. et al. Norwalk-like calicivirus genes in farm animals. Emerging Infectious Diseases 6, 36–41 (2000).

9. Sugieda, M. & Nakajima, S. Viruses detected in the caecum contents of healthy pigs representing a new genetic cluster in genogroup

II of the genus ‘Norwalk-like viruses’. Virus Research 87, 165–172 (2002).

10. Wang, Q. et al. Porcine Noroviruses Related to Human Noroviruses. Emerging infectious diseases 11, 1874–1881 (2005).

11. Zheng, D. et al. Norovirus classification and proposed strain nomenclature. Virology 346, 312–323 (2006).

12. Di Bartolo, I. et al. Detection and characterization of porcine caliciviruses in Italy. Arch Virol 159, 2479–2484 (2014).

13. Chao, D., Wei, J., Chang, W., Wang, J. & Wang, L. Detection of Multiple Genotypes of Calicivirus Infection in Asymptomatic Swine

in Taiwan. Zoonoses and Public Health 59, 434–444 (2012).

14. Cunha, J. B., de Mendonça, M. C. L., Miagostovich, M. P. & Leite, J. P. G. First detection of porcine norovirus GII.18 in Latin

America. Research in Veterinary Science 89, 126–129 (2010).

15. Cunha, J., de Mendonça, M., Miagostovich, M. & Leite, J. Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de

Janeiro State, Brazil. Arch Virol 155, 1301–1305 (2010).

16. Keum, H. et al. Porcine noroviruses and sapoviruses on Korean swine farms. Archives of virology 154, 1765–1774 (2009).

17. Kelly, A. S. et al. Prevalence of Porcine Noroviruses, Molecular Characterization of Emerging Porcine Sapoviruses from Finisher

Swine in the United States, and Unified Classification Scheme for Sapoviruses. Journal of Clinical Microbiology 51, 2344–2353

(2013).

18. Mauroy, A. et al. Noroviruses and sapoviruses in pigs in Belgium. Arch Virol 153, 1927–1931 (2008).

19. Mijovski, J. Z., Poljšak-Prijatelj, M., Steyer, A., Barlič-Maganja, D. & Koren, S. Detection and molecular characterisation of

noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms. Infection, Genetics and Evolution 10, 413–420

(2010).

20. Qiu-Hong Wang, M., Souza, J. A., Funk, W. Z. & Linda, J. Saif. Prevalence of Noroviruses and Sapoviruses in Swine of Various Ages

Determined by Reverse Transcription-PCR and Microwell Hybridization Assays. Journal of Clinical Microbiology 44, 2057–2062

(2006).

21. Shen, Q., Zhang, W., Yang, S., Cui, L. & Hua, X. Complete Genome Sequence of a New-Genotype Porcine Norovirus Isolated from

Piglets with Diarrhea. Journal of Virology 86, 7015–7016 (2012).

22. Silva, P. F. et al. High frequency of porcine norovirus infection in finisher units of Brazilian pig-production systems. Trop Anim

Health Prod 47, 237–241 (2015).

23. Sisay, Z. et al. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in

Ethiopia. Arch Virol 161, 2739–2747 (2016).

24. Wang, Q.-H. C., Saif, V. & Linda, J. Porcine enteric caliciviruses: Genetic and antigenic relatedness to human caliciviruses, diagnosis

and epidemiology. Vaccine 25, 5453–5466 (2007).

25. Ruether, I. et al. Molecular characterization of a new intergenotype Norovirus GII recombinant. Virus Genes 44, 237–243 (2012).

26. Villabruna, N., Koopmans, M. P. G. & de Graaf, M. Animals as Reservoir for Human Norovirus. Viruses 11 (2019).

27. Rodríguez-Lázaro, D. et al. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by

international air travelers. International Journal of Food Microbiology 209, 39–43 (2015).

28. Parra, G. I. Emergence of norovirus strains: A tale of two genes. Virus Evol 5 (2019).

29. Laconi, A. et al. Identification of two divergent swine Noroviruses detected at the slaughterhouse in North East Italy. Porc Health

Manag 6, 9 (2020).

30. Machnowska, P., Ellerbroek, L. & Johne, R. Detection and characterization of potentially zoonotic viruses in faeces of pigs at

slaughter in Germany. Veterinary Microbiology 168, 60–68 (2014).

31. Shen, Q. et al. Recombinant porcine norovirus identified from piglet with diarrhea. BMC veterinary research 8, 155 (2012).

32. Shen, Q. et al. Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Archives of virology

154, 1625–1630 (2009).

33. Jiang, X. et al. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. Journal

of Virological Methods 83, 145–154 (1999).

34. Eden, J., Tanaka, M., Boni, M. F., Rawlinson, W. D. & White, P. A. Recombination within the pandemic norovirus GII.4 lineage.

(2013)

35. Lam, T. T. et al. The recombinant origin of emerging human norovirus GII.4/2008: intra-genotypic exchange of the capsid P2

domain. J. Gen. Virol 93, 817–822 (2012).

36. Pan, K. & Deem, M. W. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin

of H3N2 influenza. J R Soc Interface 8, 1644–1653 (2011).

37. Garriga, D., Ferrer-Orta, C., Querol-Audí, J., Oliva, B. & Verdaguer, N. Role of motif B loop in allosteric regulation of RNAdependent RNA polymerization activity. J. Mol. Biol. 425, 2279–2287 (2013).

38. Barclay, L. et al. Emerging Novel GII.P16 Noroviruses Associated with Multiple Capsid Genotypes. Viruses 11 (2019).

39. Tohma, K., Lepore, C. J., Ford-Siltz, L. A. & Parra, G. I. Phylogenetic Analyses Suggest that Factors Other Than the Capsid Protein

Play a Role in the Epidemic Potential of GII.2 Norovirus. mSphere 2 (2017).

40. Fonager, J. et al. A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks

and novel variants. Scientific Reports 7, 1–11 (2017).

41. Strubbia, S. et al. Characterization of Norovirus and Other Human Enteric Viruses in Sewage and Stool Samples Through NextGeneration Sequencing. Food Environ Virol 11, 400–409 (2019).

42. Brown, J. R. et al. Norovirus Whole-Genome Sequencing by SureSelect Target Enrichment: a Robust and Sensitive Method. J. Clin.

Microbiol. 54, 2530–2537 (2016).

43. Ford-Siltz, L. A. et al. Genomics Analyses of GIV and GVI Noroviruses Reveal the Distinct Clustering of Human and Animal

Viruses. Viruses 11, 204 (2019).

44. Arnal, C. et al. Comparison of seven RNA extraction methods on stool and shellfish samples prior to hepatitis A virus amplification.

Journal of Virological Methods 77, 17–26 (1999).

45. Bolanaki, E. et al. Direct extraction and molecular characterization of enteroviruses genomes from human faecal samples. Molecular

and Cellular Probes 22, 156–161 (2008).

46. Esona, M. D. et al. Comparative evaluation of commercially available manual and automated nucleic acid extraction methods for

rotavirus RNA detection in stools. J. Virol. Methods 194, 242–249 (2013).

47. Gregori, J. et al. Virology. Virology 493, 227–237 (1955).

48. Ghasemzadeh, A., Ter Haar, M. M., Shams-Bakhsh, M., Pirovano, W. & Pantaleo, V. Shannon entropy to evaluate substitution rate

variation among viral nucleotide positions in datasets of viral siRNAs. Methods in molecular biology (Clifton, N.J.) 1746, 187–195

(2018)

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
08/10/2020

Intossicazione da alcaloidi: materie prime, micotossine e salute della scrofa

Le materie prime sono necessarie per l’alimentazione delle scrofe, poiché forniscono energia, proteine e nutrienti. Tuttavia, spesso nascondono insidie, quali i fattori anti-nutrizionali. Le micotossine sono alcuni di questi e sono estremamente numerose e pericolose per i riproduttori suini. La salute degli animali è la prima a venire in meno in caso di presenza di tali sostanze nel mangime. I ricercatori francesi dell’Università di Tolosa hanno voluto studiare gli effetti di un’intossicazione acuta da alcaloidi in un allevamento industriale.

 
 

Formazione a distanza abbinata a SUMMA

 

 

Formazione Settore Agro-Zootecnico