immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Aumento specifico di Fusobacterium nel microbiota fecale di vitelli neonati affetti da Cryptosporidium parvum

Bibliografia

1. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut

microbiota. Nature. 489, 220–230 (2012).

2. Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal

microbiota. J. Clin Microbiol. 42, 1203–1206 (2004).

3. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 9, 599–608 (2012).

4. Manichanh, C. et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J. Gastroenterol.

103, 1754–1761 (2008).

5. Krogius-Kurikka, L. et al. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal

microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. 9, 95, https://doi.org/10.1186/1471-

230X-9-95 (2009).

6. Rigsbee, L. et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J.

Gastroenterol. 107, 1740–51 (2012).

7. Oikonomou, G. et al. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S

rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 8, e63157 (2013).

8. Xie, G. et al. Alteration of digestive tract microbiome in neonatal Holstein bull calves by bacitracin methylene disalicylate treatment

and scours. J. Anim. Sci. 91, 4984–4990 (2013).

9. Zeineldin, M., Aldridge, B. & Lowe, J. Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microb. Pathog.

115, 123–130 (2018).

10. Fecteau, M. E. et al. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis. PLoS

One 11, e0160353 (2016).

11. Fayer, R., Speer, C. A. & Dubey, J. P. General biology of Cryptosporidium in Cryptosporidiosis of man and animals (ed. Dubey, J. P.,

Speer, C. A. & Fayer, R.) 1–29 (CRC Press, 1990).

12. Crawford, F. G. & Vermund, S. H. Human cryptosporidiosis. Crit. Rev. Microbiol. 16, 113–159 (1988).

13. Fox, L. M. & Saravolatz, L. D. Nitazoxanide: a new thiazolide antiparasitic agent. Clin. Infect. Dis. 40, 1173–1180 (2005).

14. Nyadam, D. & Peregrine, A. S. Present and future control of cryptosporidiosis in cattle. AABP PROCEEDINGS 38, 15–18 (2005).

15. Ollivett, T. L. et al. Effect of nitazoxanide on cryptosporidiosis in experimentally infected neonatal dairy calves. J. Dairy Sci. 92,

1643–1648 (2009).

16. Schnyder, M., Kohler, L., Hemphill, A. & Deplazes, P. Prophylactic and therapeutic efficacy of nitazoxanide against Cryptosporidium

parvum in experimentally challenged neonatal calves. Vet. Parasitol. 160, 149–154 (2009).

17. Fayer, R. & Ungar, B. L. P. Cryptosporidium spp. and cryptosporidiosis. Microbiol. Rev. 50, 458–483 (1986).

18. Soave, R. & Armstrong, D. Cryptospoiidium and cryptosporidiosis. Rev. Infect. Dis. 8, 1012–1023 (1986).

19. Harp, J. A., Wannemuehler, M. W., Woodmansee, D. B. & Moon, H. W. Susceptibility of germfree or antibiotic-treated adult mice to

Cryptosporidium parvum. Infect Immun. 56, 2006–2010 (1988).

20. Harp, J. A., Chen, W. & Harmsen, A. G. Resistance of severe combined immunodeficient mice to infection with Cryptosporidium

parvum: the importance of intestinal microflora. Infect Immun. 60, 3509–3512 (1992).

21. Foster, J. C. et al. Effect of Lactobacillus and Bifidobacterium on Cryptosporidium parvum oocyst viability. Food Microbiol. 20,

351–357 (2003).

22. Glass, M. D., Courtney, P. D., LeJeune, J. T. & Ward, L. A. Effects of Lactobacillus acidophilus and Lactobacillus reuteri cell-free

supernatants on Cryptosporidium viability and infectivity in vitro. Food Microbiol. 21, 423–429 (2004).

23. Alak, J. I. et al. Effect of Lactobacillus reuteri on intestinal resistance to Cryptosporidium parvum infection in a murine model of

acquired immunodeficiency syndrome. J. Infect Dis. 175, 218–221 (1997).

24. Alak, J. I. et al. Supplementation with Lactobacillus reuteri or L. acidophilus reduced intestinal shedding of Cryptosporidium parvum

oocysts in immunodeficient C57BL/6 mice. Cell Mol Biol 45, 855–863 (1999).

25. Pickerd, N. & Tuthill, D. Resolution of cryptosporidiosis with probiotic treatment. Postgrad Med J. 80, 112–113 (2004).

26. Harp, J. A. et al. Field testing of prophylactic measures against Cryptosporidium parvum infection in calves in a California dairy herd.

Am J. Vet Res. 57, 1586–1588 (1996).

27. Nagaraja, T. G., Narayanan, S. K., Stewart, G. C. & Chengappa, M. M. Fusobacterium necrophorum infections in animals:

pathogenesis and pathogenic mechanisms. Anaerobe. 11, 239–246 (2005).

28. Signorini, M. L. et al. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of

randomized controlled trials of lactic acid bacteria. Res. Vet. Sci. 93, 250–258 (2012).

29. Uga, S. et al. Prevalence of Cryptosporidium parvum infection and pattern of oocyst shedding in calves in Japan. Vet Parasitol. 94,

27–32 (2000)

30. Nydam, D. V., Wade, S. E., Schaaf, S. L. & Mohammed, H. O. Number of Cryptosporidium parvum oocysts or Giardia spp cysts shed

by dairy calves after natural infection. Am J. Vet Res. 62, 1612–1615 (2001).

31. Chappell, C. L., Okhuysen, P. C., Sterling, C. R. & DuPont, H. L. Cryptosporidium parvum: intensity of infection and oocyst excretion

patterns in healthy volunteers. J. Infect Dis. 173, 232–236 (1996).

32. Trotz-Williams, L. A. et al. Calf-level risk factors for neonatal diarrhea and shedding of Cryptosporidium parvum in Ontario dairy

calves. Prev Vet Med. 82, 12–28 (2007).

33. Ohkusa, T., Okayasu, I., Tokoi, S. & Ozaki, Y. Bacterial invasion into the colonic mucosa in ulcerative colitis. J. Gastroenterol Hepatol.

8, 116–118 (1993).

34. Ohkusa, T. et al. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible

pathogenic mechanism of ulcerative colitis. J. Med Microbiol. 58, 535–545 (2009).

35. Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host.

Inflamm Bowel Dis. 17, 1971–1978 (2011).

36. Ohkusa, T. et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific

antibody. J. Gastroenterol Hepatol. 17, 849–853 (2002).

37. Ohkusa, T. et al. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with

ulcerative colitis. Gut. 52, 79–83 (2003).

38. Ohkusa, T. et al. Effectiveness of antibiotic combination therapy in patients with active ulcerative colitis: a randomized, controlled

pilot trial with long-term follow-up. Scand J. Gastroenterol. 40, 1334–1342 (2005).

39. Aita, J. et al. Molecular characterization of Cryptosporidium parvum detected in Japanese black and Holstein calves in Iwate

Prefecture and Tanegashima Island, Kagoshima Prefecture, Japan. J. Vet Med Sci. 77, 997–999 (2015).

40. Stroup, S. E. et al. Real-time PCR detection and speciation of Cryptosporidium infection using Scorpion probes. J. Med Microbiol. 55,

1217–1222 (2006).

41. Rinttilä, T. et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous

bacteria in faecal samples by real-time PCR. J. Appl Microbiol. 97, 1166–1177 (2004).

42. Ichikawa-Seki, M. et al. Molecular characterization of Cryptosporidium parvum from two different Japanese prefectures, Okinawa

and Hokkaido. Parasitol Int. 64, 161–166 (2015)

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
08/10/2020

Intossicazione da alcaloidi: materie prime, micotossine e salute della scrofa

Le materie prime sono necessarie per l’alimentazione delle scrofe, poiché forniscono energia, proteine e nutrienti. Tuttavia, spesso nascondono insidie, quali i fattori anti-nutrizionali. Le micotossine sono alcuni di questi e sono estremamente numerose e pericolose per i riproduttori suini. La salute degli animali è la prima a venire in meno in caso di presenza di tali sostanze nel mangime. I ricercatori francesi dell’Università di Tolosa hanno voluto studiare gli effetti di un’intossicazione acuta da alcaloidi in un allevamento industriale.

 
 

Formazione a distanza abbinata a SUMMA

 

 

Formazione Settore Agro-Zootecnico