Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

La sete: regolazione neuroendocrina


1. Ahmadian-Moghadam H., Sadat-Shirazi M.S., Zarrindast M.R. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; vol 110: pp. 56-77.

2. Appelgren B.H., Thrasher T.N., Keil L.C., Ramsay D.J. Mechanism of drinking induced inhibition of vasopressin secretion in dehydrated dogs. Am. J. Physiol. 1991; vol 261: pp. R1226-1233.

3. Bankir L., Bichet D.G., Morgenthaler N.G. Vasopressin: physiology, assessment and osmosensation. J. Intern. Med. 2017; vol 282: pp. 284-297.

4. Bernal A., Mahía J., Mediavilla C., Puerto A. Opposite effects of oxytocin on water intake induced by hypertonic NaCl or polyethylene glycol administration. Physiol. Behav. 2015; vol 141: pp. 135-142.

5. Borella T.L., De Luca L.A., Colombari D.S.A., Menani J.V. Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake. Br. J. Pharmacol. 2008; vol 155: pp. 1256-1263.

6. Butudom P., Barnes D.J., Davis M.W., Nielsen B.D., Eberhart S.W., Schott H.C. Rehydration fluid temperature affects voluntary drinking in horses dehydrated by furosemide administration and endurance exercise. Vet. J. 2004; vol 167: pp. 72-80.

7. Carlson N.R., Fisiologia del Comportamento. 7a edizione, Piccin, Padova, 2002: pp. 393-415.

8. Coletti R., Almeida-Pereira G., Elias L.L.K., Antunes-Rodrigues J. Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm. Behav. 2014; vol 67: pp. 12-20.

9. Cowen L.E., Hodak S.P., Verbalis J.G. Age-Associated Abnormalities of Water Homeostasis. Endocrinol Metab Clin North Am 2013; vol 42: pp. 349-370.

10. Felgendreger L.A., Fluharty S.J., Yee D.K., Flanagan-Cato L.M. Endogenous angiotensin II-induced p44/42 MAPK activation mediates sodium appetite but not thirst or neurohypophysial secretion in male rats. J. Neuroendocrinol. 2013; vol 25: pp. 97-106.

11. Feng N.Y., Junkins M.S., Merriman D.K., Bagriantsev S.N., Gracheva E.O. Osmolyte Depletion and Thirst Suppression Allow Hibernators to Survive for Months without Water. Curr. Biol. 2019; vol 29: pp. 3053-3058.

12. Gizowski C., Bourque C.W. Hypothalamic neurons controlling water homeostasis: it’s about Time. Current Opinion in Physiology 2018; vol 5: pp. 45-50.

13. Gizowski C., Bourque C.W. The neural basis of homeostatic and anticipatory thirst. Nat. Rev. Nephrol. 2018; vol 14: pp. 11-25.

14. Hurley S.W., Arseth HA., Johnson A.K. Orexin neurons couple neural systems mediating fluid balance with motivation-related circuits. Behavioural Neuroscience 2018; vol 132:284-292.

15. Kuksis M., Ferguson A.V. Cellular Actions of Nesfatin-1 in the Subfornical Organ. J. Neuroendocrinol. 2014; vol 26: pp. 237-246.

16. Kurt G., Woodworth H.L., Fowler S., Bugescu R., Leinninger G.M. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2019; vol 154: pp. 13-21.

17. Leib D.E., Zimmerman C.A., Knigh Z.A. Thirst. Current Biology 2016; vol 26:R1260-R1265.

18. Luz P.A., Saraiva R., Almeida T., Fregoneze J.B., De Castro e Silva E. Blockade of central kappa-opioid receptors inhibits the antidipsogenic effect of interleukin-1beta. Neuropeptides 2009; vol 43: pp. 93-103.

19. Magrani J., Silva E.D.E., Varjao B., Duarte G., Ramos A.C., Athanazio R., Barbetta M., Luz P., Fregoneze J.B. Histaminergic H-1 and H-2 receptors located within the ventromedial hypothalamus regulate food and water intake in rats. Pharmacol. Biochem. Behav. 2004; vol 79: pp. 189-198.

20. McKay N.J., Daniela L., Galante D.L., Daniels D. Endogenous Glucagon-Like Peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in Rats. The J. Neurosci. 2014; vol 34: pp. 16417-16423.

21. McKinley M.J., Trevaks D., Weissenborn F., McAllen R. Interaction between thermoregulation and osmoregulation in domestic animals. Rev. Bras. Zootecn. 2017; vol 46: pp. 783-790.

22. McKinley M.J., Denton D.A., Ryan P.J., Yao S.T., Stefanidis A., Oldfield B.J. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J. Neuroendocrinol. 2019; vol 31: pp. e12689.

23. McKinley M.J., Walker L.L., Alexiou T., Allen A.M., Campbell D.J., Di Nicolantonio R., Oldfield B.J., Denton D.A. Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin. Am. J. Physiol. 2008; vol 294: pp. R1533-R1543.

24. McKinley M.J., Weissenborn F., Mathai M.L. Drinking-induced thermoregulatory panting in rehydrated sheep: influences of oropharyngeal/esophageal signals, core temperature, and thirst satiety. Am. J. Physiol. 2009; vol 296: pp. R1881-R1888.

25. Moreau J.M., Iqbal W., Turner J.K., Wagner G.F., Ciriello J. Stanniocalcin-1 in the subfornical organ inhibits the dipsogenic response to angiotensin II. Am. J. Physiol. 2012; vol 303: pp. R921-R928.

26. Nyman S., Jansson A., Lindholm A., Dahlborn K. Water intake and fluid shifts in horses: effects of hydration status during two exercise tests. Equine Vet. J. 2002; vol 34: pp. 133-142.

27. Pate A.T., Yosten G.L.C., Samson W.K. Compromise of endogenous Neuropeptide W production abrogates the dipsogenic and pressor effects of Angiotensin II in adult, male rats. J. Neuroendocrinol. 2013; vol 25: pp. 1290-1297.

28. Prager-Khoutorsky M. Mechanosensing in hypothalamic osmosensory neurons. Semin. Cell Dev. Biol. 2017; vol 71: pp. 13-21.

29. Ryan P.J., Ross S.I., Campos C.A., Derkach V.A., Palmiter R.D. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat. Neurosci. 2017; vol 20: pp. 1722-1733.

30. Samson W.K., White M.M., Price C., Ferguson A.V. Obestatin acts in brain to inhibit thirst. Am. J. Physiol. 2007; vol 292: pp. R637-643.

31. Song P., Zechner C., Hernandez G., Canovas J., Xie Y., Sondhi V., Wagner M., Stadlbauer V., Horvath A., Leber B., Chang Hu M., Moe O.W., Mangelsdorf D.J., Kliewer S.A. The Hormone FGF21 Stimulates Water Drinking in Response to Ketogenic Diet and Alcohol. Cell Metab. 2018; vol 27: pp. 1338-1347.

32. Stein L.M., Yosten G.L.C., Samson W.K. Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. Am. J. Physiol. 2016; vol 310: pp. R476-R480.

33. Takahashi M., Tanaka J. Serotonin release in the subfornical organ area induced by sodium and water intake in the rat. Physiol. Behav. 2016; vol 164: pp. 123-128.

34. Taylor M.M., Baker J.R., Samson W.K. Brain-derived adrenomedullin controls blood volume through the regulation of arginine vasopressin production and release. Am. J. Physiol. 2005; vol 288: pp. R1203-R1210.

35. Thunhorst R.L., Xue B., Beltz T.G., Johnson A.K. Age-related changes in thirst, salt appetite, and arterial blood pressure in response to aldosterone-dexamethasone combination in rats. Am. J. Physiol. 2015; vol 308: pp. R807-R815.

36. Vestergaard E.T., Møller N., Andersen R.F., Rittig S., Jørgensen J.O.L. Acute intravenous acyl ghrelin infusion induces thirst but does not affect sodium excretion: two randomized, double-blind, placebo-controlled crossover studies in hypopituitary patients. Eur. J. Endocrinol. 2019; vol 181: pp. 23-30.

37. Vilhena-Franco T., Mecawi A.S., Elias L.L.K., Antunes-Rodrigues J. Oestradiol effects on neuroendocrine responses induced by water deprivation in rats. J. Endocrinol. 2016; vol 231: pp. 167-180.

38. Yoshimoto R., Miyamoto Y., Takahashi K., Kotani H., Kanatani A., Tokita S. Impaired drinking response in histamine H3 receptor knockout mice following dehydration or angiotensin-II challenge. Pharmacol. Biochem. Behav. 2006; vol 84: pp. 504-510.

39. Zanella R.C., Melo M.R., Furuya W.I., Colombari E., Menani J.V., Colombari D.S.A. Hydrogen peroxide centrally attenuates hyperosmolarity-induced thirst and natriuresis. Neurosci. Lett. 2016; vol 610: pp. 129-134.

40. Zimmerman C.A., Huey E.L., Ahn J.S., Beutler L.R., Tan C.L., Kosar S., Bai L., Chen Y., Corpuz T.V., Madisen L., Zeng H., Knigh Z.A. A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 2019; vol 568: pp. 98-102.




Abbonati per accedere


Black Friday 2019 PVI

Dal web internazionale

Intossicazione da alcaloidi: materie prime, micotossine e salute della scrofa

Le materie prime sono necessarie per l’alimentazione delle scrofe, poiché forniscono energia, proteine e nutrienti. Tuttavia, spesso nascondono insidie, quali i fattori anti-nutrizionali. Le micotossine sono alcuni di questi e sono estremamente numerose e pericolose per i riproduttori suini. La salute degli animali è la prima a venire in meno in caso di presenza di tali sostanze nel mangime. I ricercatori francesi dell’Università di Tolosa hanno voluto studiare gli effetti di un’intossicazione acuta da alcaloidi in un allevamento industriale.


Formazione a distanza abbinata a SUMMA



Formazione Settore Agro-Zootecnico