immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Tipizzazione antigenica di nuovi virus H1 dell’influenza A nel suino

Bibliografia

1. International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy: 2018b Release. Preprint at, https://talk.ictvonline.org/ taxonomy/ (2019).

2. Tong, S. et al. New world bats harbor diverse influenza A viruses. Plos Pathog. 9, e1003657, https://doi.org/10.1371/journal. ppat.1003657 (2013).

3. Scholtissek, C., Bürger, H., Kistner, O. & Shortridge, K. F. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147, 287–294 (1985).

4. Joseph, U., Su, Y. C., Vijaykrishna, D. & Smith, G. J. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir. Viruses 11, 74–84 (2017).

  1. Smith, G. J. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125 (2009).

  2. Lindstrom, S. et al. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg. Infect. Dis. 18, 834–837 (2012).

  3. Feng, Z. et al. Antigenic characterization of H3N2 influenza A viruses from Ohio agricultural fairs. J. Virol. 87, 7655–7667, https:// doi.org/10.1128/JVI.00804-13 (2013).

  4. Rassy, D. & Smith, R. D. The economic impact of H1N1 on Mexico’s tourist and pork sectors. Health Econ. 22, 824–834 (2013).

  5. Yoo, S. J., Kwon, T. & Lyoo, Y. S. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective

    control measure. Clin. Exp. Vaccine Res. 7, 1–15 (2018).

  6. Van Reeth, K. & Ma, W. Swine influenza virus vaccines: to change or not to change-that’s the question. Curr. Top. Microbiol. Immunol. 370, 173–200 (2013).

 

  1. Sandbulte, M. R., Spickler, A. R., Zaabel, P. K. & Roth, J. A. Optimal use of vaccines for control of influenza A virus in swine. Vaccines (Basel) 3, 22–73 (2015).

  2. Vincent, A. et al. Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 61, 4–17 (2014).

  3. Anderson, T. K. et al. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses. mSphere 1, e00275–16, https://doi.org/10.1128/mSphere.00275-16 (2016).

  4. Nelson, M. I. & Holmes, E. C. The evolution of epidemic influenza. Nat. Rev. Genet. 8, 196–205 (2007).

  5. Webster, R. G. & Govorkova, E. A. Continuing challenges in influenza. Ann. N. Y. Acad. Sci. 1323, 115–139 (2014).

  6. Krammer, F. et al. Influenza. Nat. Rev. Dis. Primers 4, 3, https://doi.org/10.1038/s41572-018-0002-y (2018).

  7. Gerhard, W., Yewdell, J., Frankel, M. E. & Webster, R. Antigenic structure of influenza virus haemagglutinin defined by hybridoma

    antibodies. Nature 290, 713–717 (1981).

  8. Caton, A. J., Brownlee, G. G., Yewdell, J. W. & Gerhard, W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin

    (H1 subtype). Cell 31, 417–427 (1982).

  9. Treanor, J. Influenza vaccine–outmaneuvering antigenic shift and drift. N. Engl. J. Med. 350, 218–220 (2004).

  10. Medina, R. A. et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic

    properties of the H1N1 influenza viruses. Sci. Transl. Med. 5, 187ra70, https://doi.org/10.1126/scitranslmed.3005996 (2013).

  11. Kim, J. I. & Park, M. S. N-linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei Med. J. 53, 886–893 (2012).

  12. Kobayashi, Y. & Suzuki, Y. Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus

    hemagglutinin. J. Virol. 86, 3446–3451 (2012).

  13. Job, E. R. et al. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1

    2009 pandemic viruses. J. Immunol. 190, 2169–2177 (2013).

  14. Nelson, M. et al. Novel human-like influenza A viruses circulate in swine in Mexico and Chile. Plos Curr. 7, ecurrents.outbreaks.

    c8b3207c9bad98474eca3013fa933ca6, https://doi.org/10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6 (2015).

  15. Bravo-Vasquez, N. et al. Swine influenza virus (H1N2) characterization and transmission in ferrets, Chile. Emerg. Infect. Dis. 23,

    241–251 (2017).

  16. Tapia, R. et al. Infection of novel reassortant H1N2 and H3N2 swine influenza A viruses in the guinea pig model. Vet. Res. 49, 73,

    https://doi.org/10.1186/s13567-018-0572-4 (2018).

  17. Corzo, C. A. et al. Active surveillance for influenza A virus among swine, midwestern United States, 2009–2011. Emerg. Infect. Dis.

    19, 954–960 (2013).

  18. World Health Organization (WHO). CDC protocol of real time RTPCR for influenza A (H1N1). Preprint at, https://www.who.int/

    csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf (2009).

  19. Burke, D. F. & Smith, D. J. A recommended numbering scheme for influenza A HA subtypes. Plos One 9, e112302, https://doi.

    org/10.1371/journal.pone.0112302 (2014).

  20. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30,

    1312–1313 (2014).

  21. Kitikoon, P., Gauger, P. C. & Vincent, A. L. Hemagglutinin inhibition assay with swine sera. Methods Mol. Biol. 1161, 295–301

    (2014).

  22. Lowen, A. C. et al. Blocking interhost transmission of influenza virus by vaccination in the guinea pig model. J. Virol. 83, 2803–2818

    (2009).

  23. Bushnell, R. V. et al. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with

    hemagglutinin protein. Virol. J. 7, 200, https://doi.org/10.1186/1743-422X-7-200 (2010).

  24. Thangavel, R. R. & Bouvier, N. M. Animal models for influenza virus pathogenesis, transmission, and immunology. J. Immunol.

    Methods 410, 60–79 (2014).

  25. Lowen, A. C., Mubareka, S., Tumpey, T. M., García-Sastre, A. & Palese, P. The guinea pig as a transmission model for human

    influenza viruses. Proc. Natl. Acad. Sci. USA 103, 9988–9992 (2006).

  26. Direksin, K., Joo, H. & Goyal, S. M. An immunoperoxidase monolayer assay for the detection of antibodies against swine influenza

    virus. J. Vet. Diagn. Invest. 14, 169–171 (2002).

  27. Nelson, M. I., Stratton, J., Killian, M. L., Janas-Martindale, A. & Vincent, A. L. Continual reintroduction of human pandemic H1N1

    influenza A viruses into swine in the United States, 2009 to 2014. J. Virol. 89, 6218–6226 (2015).

  28. Skowronski, D. M. et al. Cross-reactive and vaccine-induced antibody to an emerging swine-origin variant of influenza A virus

    subtype H3N2 (H3N2v). J. Infect. Dis. 206, 1852–1861 (2012).

  29. Lewis, N. S. et al. Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2

    viruses in U.S. swine. J. Virol. 88, 4752–4763 (2014).

  30. Nelson, M. I., Schaefer, R., Gava, D., Cantão, M. E. & Ciacci-Zanella, J. R. Influenza A viruses of human origin in swine, Brazil.

    Emerg. Infect. Dis. 21, 1339–1347 (2015).

  31. Resende, P. C. et al. Whole-genome characterization of a novel human influenza A(H1N2) virus variant, Brazil. Emerg. Infect. Dis.

    23, 152–154 (2017).

  32. Yang, H., Carney, P. & Stevens, J. Structure and receptor binding properties of a pandemic H1N1 virus hemagglutinin. Plos Curr. 2,

    RRN1152, https://doi.org/10.1371/currents.RRN1152 (2010).

  33. Strengell, M., Ikonen, N., Ziegler, T. & Julkunen, I. Minor changes in the hemagglutinin of influenza A(H1N1)2009 virus alter its

    antigenic properties. Plos One 6, e25848, https://doi.org/10.1371/journal.pone.0025848 (2011).

  34. Retamal, M., Abed, Y., Corbeil, J. & Boivin, G. Epitope mapping of the 2009 pandemic and the A/Brisbane/59/2007 seasonal (H1N1)

    influenza virus haemagglutinins using mAbs and escape mutants. J. Gen. Virol. 95, 2377–2389 (2014).

  35. Koel, B. F. et al. Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses. J. Virol.

    89, 3763–3775 (2015).

  36. Wang, S. F. et al. Influenza A virus in Taiwan, 1980–2006: Phylogenetic and antigenic characteristics of the hemagglutinin gene. J.

    Med. Virol. 81, 1457–1470 (2009).

  37. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

  38. Shih, A. C., Hsiao, T. C., Ho, M. S. & Li, W. H. Simultaneous amino acid substitutions at antigenic sites drive influenza A

    hemagglutinin evolution. Proc. Natl. Acad. Sci. USA 104, 6283–6288 (2007).

  39. Vincent, A. L. et al. Characterization of an influenza A virus isolated from pigs during an outbreak of respiratory disease in swine

    and people during a county fair in the United States. Vet. Microbiol. 137, 51–59 (2009).

  40. Harvey, W. T. et al. Identification of low- and high-impact hemagglutinin amino acid substitutions that drive antigenic drift of

    influenza A(H1N1) viruses. Plos Pathog. 12, e1005526, https://doi.org/10.1371/journal.ppat.1005526 (2016).

  41. Koel, B. F. et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution.

    Science 342, 976–979 (2013).

  42. Liu, S. T. H. et al. Antigenic sites in influenza H1 hemagglutinin display species-specific immunodominance. J. Clin. Invest. 128,

    4992–4996 (2018).

  43. Chen, Z. et al. Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in

    embryonated chicken eggs. J. Virol. 84, 44–51 (2010).

54. Guarnaccia, T. et al. Antigenic drift of the pandemic 2009 A(H1N1) influenza virus in A ferret model. Plos Pathog. 9, e1003354, https://doi.org/10.1371/journal.ppat.1003354 (2013).

  1. O’Donnell, C. D. et al. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. MBio 3, e00120–12, https://doi.org/10.1128/mBio.00120-12 (2012).

  2. Rudneva, I. et al. Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Res. 166, 61–67 (2012).

 

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
24/07/2020

Clostridium novyi e morte improvvisa: una particolare clostridiosi nella scrofa

Il Clostridium novyi è stato isolato per la prima volta nel 1894 nelle cavie. Tale batterio è ampiamente distribuito nel suolo, nelle acque e nei sedimenti marini e colpisce sia l’uomo che gli animali con una diffusione che è globale.

 
 

Formazione a distanza abbinata a SUMMA

 

 

Formazione Settore Agro-Zootecnico