immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Microevoluzione della resistenza antibiotica e della formazione di biofilm in Salmonella typhimurium in caso di persistenza negli allevamenti suinicoli

Bibliografia
1. EFSA.The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in
2012. EFSA Journal 12, https://doi.org/10.2903/j.efsa.2014.3547 (2014).
2. Kirk, M. D. et al.World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial,
Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med 12, e1001921, https://doi.org/10.1371/journal.pmed.1001921
(2015).
3. EFSA., E. U. summary report on zoonoses, zoonotic agents and food-borne outbreaks 2015. EFSA Journal 14, 4634, https://doi.
org/10.2903/j.efsa.2016.4634 (2016).
4. Hazards, E. P. O. B. Scientific Opinion on an estimation of the public health impact of setting a new target for the reduction of
Salmonella in turkeys. EFSA. Journal 10, 2616 (2012).
5. Boyen, F. et al. Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control. Vet Microbiol
130, 1–19, https://doi.org/10.1016/j.vetmic.2007.12.017 (2008).
6. Wood, R. L., Pospischil, A. & Rose, R. Distribution of persistent Salmonella typhimurium infection in internal organs of swine. Am
J Vet Res 50, 1015–1021 (1989).
7. Andres, V. M. & Davies, R. H. Biosecurity Measures to Control Salmonella and Other Infectious Agents in Pig Farms: A Review.
Comprehensive Reviews in Food Science and Food Safety 14, 317–335 (2015).
8. Baptista, F. M., Dahl, J. & Nielsen, L. R. Factors influencing Salmonella carcass prevalence in Danish pig abattoirs. Prev VetMed 95,
231–238, https://doi.org/10.1016/j.prevetmed.2010.04.007 (2010).
9. Miller, A. J. et al. Salmonella serovars and antimicrobial resistance patterns on a sample of high seroprevalence pig farms in England
andWales (2003-2008). Zoonoses and public health 58, 549–559, https://doi.org/10.1111/j.1863-2378.2011.01402.x (2011).
10. Martelli, F. et al. Evaluation of an enhanced cleaning and disinfection protocol in Salmonella contaminated pig holdings in the
United Kingdom. PLoS One 12, e0178897, https://doi.org/10.1371/journal.pone.0178897 (2017).
11. Steenackers, H., Hermans, K., Vanderleyden, J. & De Keersmaecker, S. C. J. Salmonella biofilms: An overview on occurrence,
structure, regulation and eradication. Food Research International 45, 502–531 (2012).
12. Bolton, D. J., Ivory, C. &McDowell, D. A study of Salmonella in pigs from birth to carcass: serotypes, genotypes, antibiotic resistance
and virulence profiles. Int J FoodMicrobiol 160, 298–303, https://doi.org/10.1016/j.ijfoodmicro.2012.11.001 (2013).
13. Prendergast, D. M. et al. Application of multiple locus variable number of tandem repeat analysis (MLVA), phage typing and
antimicrobial susceptibility testing to subtype Salmonella enterica serovar Typhimurium isolated from pig farms, pork
slaughterhouses and meat producing plants in Ireland. Food Microbiol 28, 1087–1094, https://doi.org/10.1016/j.fm.2011.02.013
(2011).
14. Visscher, C. F. et al. Serodiversity and serological as well as cultural distribution of Salmonella on farms and in abattoirs in Lower
Saxony, Germany. Int J FoodMicrobiol 146, 44–51, https://doi.org/10.1016/j.ijfoodmicro.2011.01.038 (2011).
15. Gebreyes,W. A., Altier, C. &Thakur, S. Molecular epidemiology and diversity of Salmonella serovar Typhimurium in pigs using
phenotypic and genotypic approaches. Epidemiol Infect 134, 187–198, https://doi.org/10.1017/S0950268805004723 (2006).
16. Gebreyes,W. A. et al. Characterization of antimicrobial-resistant phenotypes and genotypes among Salmonella enterica recovered
from pigs on farms, from transport trucks, and from pigs after slaughter. J Food Prot 67, 698–705 (2004).
17. Rowe, T. A. et al. Salmonella serotypes present on a sample of Irish pig farms. Ve t R e c 153, 453–456 (2003).
18. Andres-Barranco, S., Vico, J. P., Marin, C. M., Herrera-Leon, S. & Mainar-Jaime, R. C. Characterization of Salmonella enterica
Serovar Typhimurium Isolates from Pigs and Pig Environment-Related Sources and Evidence of New Circulating Monophasic
Strains in Spain. J Food Prot 79, 407–412, https://doi.org/10.4315/0362-028X.JFP-15-430 (2016).
19. Arguello, H. et al. Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production. Res Vet Sci 95, 334–342,
https://doi.org/10.1016/j.rvsc.2013.04.001 (2013).
20. Hauser, E. et al. Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. Appl Environ
Microbiol 76, 4601–4610, https://doi.org/10.1128/AEM.02991-09 (2010).
21. Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol Infect 145,
1513–1526, https://doi.org/10.1017/S095026881700036X (2017).
22. Hopkins, K. L. et al. Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain? Euro Surveill. 15,
https://doi.org/10.2807/ese.15.22.19580-en (2010).
23. Antunes, P.,Mourao, J., Pestana, N. & Peixe, L. Leakage of emerging clinically relevant multidrug-resistant Salmonella clones from
pig farms. J Antimicrob Chemother 66, 2028–2032, https://doi.org/10.1093/jac/dkr228 (2011).

65. Kim, S. et al. An Additional Novel Antimicrobial Resistance Gene Cluster in Salmonella Genomic Island 1 of a Salmonella enterica
Serovar Typhimurium DT104 Human Isolate. Foodborne Pathogens and Disease 6, 471–479, https://doi.org/10.1089/fpd.2008.0199
(2009).
66. Bosse, J. T. et al. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus
pleuropneumoniae. J Antimicrob Chemother 70, 2217–2222, https://doi.org/10.1093/jac/dkv121 (2015).
67. Dyall-Smith, M. L., Liu, Y. & Billman-Jacobe, H. Genome Sequence of an AustralianMonophasic Salmonella enterica subsp. enterica
Typhimurium Isolate (TW-Stm6) Carrying a Large Plasmid with Multiple Antimicrobial Resistance Genes. Genome Announc 5,
https://doi.org/10.1128/genomeA.00793-17 (2017).
68. Billman-Jacobe, H. et al. pSTM6-275, a Conjugative IncHI2 Plasmid of Salmonella entericaThat Confers Antibiotic and Heavy-
Metal Resistance under Changing Physiological Conditions. Antimicrob Agents Chemother 62, e02357–02317, https://doi.
org/10.1128/AAC.02357-17 (2018).
69. Feasey, N. A. et al. Drug resistance in Salmonella enterica ser. Typhimurium bloodstream infection,Malawi. Emerg Infect Dis 20,
1957–1959, https://doi.org/10.3201/eid2011.141175 (2014).
70. Romling, U. Genetic and phenotypic analysis of multicellular behavior in Salmonella typhimurium. Methods Enzymol 336, 48–59
(2001).
71. Aarestrup, F. M., Hasman, H., Olsen, I. & Sorensen, G. International spread of bla(CMY-2)-mediated cephalosporin resistance in a
multiresistant Salmonella enterica serovar Heidelberg isolate stemming from the importation of a boar by Denmark from Canada.
Antimicrob Agents Chemother 48, 1916–1917 (2004).
72. Okoro, C. K. et al. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in
recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin Infect Dis 54, 955–963, https://doi.org/10.1093/cid/cir1032
(2012).
73. Hawkey, J. et al. Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a
single chicken farm. BMC Genomics 14, 800, https://doi.org/10.1186/1471-2164-14-800 (2013).
74. Weaver, T. et al. Longitudinal study of Salmonella 1,4,[5],12:i:- shedding in five Australian pig herds. Prev Vet Med 136, 19–28,
https://doi.org/10.1016/j.prevetmed.2016.11.010 (2017).
75. Lim, S. K., Byun, J. R., Nam, H. M., Lee, H. S. & Jung, S. C. Phenotypic and genotypic characterization of Salmonella spp. Isolated
from pigs and their farm environment in Korea. JMicrobiol Biotechnol 21, 50–54 (2011).
76. Michael, G. B. & Schwarz, S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? ClinMicrobiol Infect
22, 968–974, https://doi.org/10.1016/j.cmi.2016.07.033 (2016).
77. Boyd, D. et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of
Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183,
5725–5732, https://doi.org/10.1128/JB.183.19.5725-5732.2001 (2001).
78. Vestby, L. K.,Moretro, T., Langsrud, S., Heir, E. & Nesse, L. L. Biofilm forming abilities of Salmonella are correlated with persistence
in fishmeal- and feed factories. BMC Vet Res 5, 20, https://doi.org/10.1186/1746-6148-5-20 (2009).
79. Seixas, R., Machado, J., Bernardo, F., Vilela, C. & Oliveira, M. Biofilm formation by Salmonella enterica serovar 1,4,[5],12:i:-
Portuguese isolates: a phenotypic, genotypic, and socio-geographic analysis. Curr Microbiol 68, 670–677, https://doi.org/10.1007/
s00284-014-0523-x (2014).
80. Peyru, G. & Fraenkel, D. G. Geneticmapping of loci for glucose-6-phosphate dehydrogenase, gluconate-6-phosphate dehydrogenase,
and gluconate-6-phosphate dehydrase in Escherichia coli. J Bacteriol 95, 1272–1278 (1968).
81. Vegge, C. S. et al. GlucoseMetabolism via the Entner-Doudoroff Pathway in Campylobacter: A Rare Trait that Enhances Survival
and Promotes Biofilm Formation in Some Isolates. FrontMicrobiol 7, 1877, https://doi.org/10.3389/fmicb.2016.01877 (2016).

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
09/06/2020

L’inseminazione artificiale nei maiali oggi

L’uso dell’inseminazione artificiale (AI) per i suini da riproduzione è stato fondamentale per facilitare i miglioramenti globali in termini di fertilità, genetica, lavoro e salute della mandria.

 
 

Formazione a distanza abbinata a SUMMA

 

 

Formazione Settore Agro-Zootecnico