Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Aspetti innovativi in materia di diagnosi e prevenzione delle mastiti bovine



1. Archer S.C., Bradley A.J., Cooper S., Davies P.L., Green M.J. Prediction of Streptococcus uberis clinical mastitis risk using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) in dairy herds. Prev. Vet. Med. 144 (2017) 1-6.

2. Armas F., Camperio C., Marianelli C. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens. PLoS one, 2017; vol. 9; n. 12(1):e0169543.

3. Aust V., Knappstein K., Kunz H.-J., Kaspar H., Wallmann J. and Kaske M. Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria. J. Anim Physiol Anim Nutr., 2013; vol. 97: pp. 1091-1103.

4. Bizzini A., Durussel C., Bille J., Greub G., Prod’hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J. Clin. Microbiol., 2010; vol. 48:pp. 1549-54.

5. Cameron M., Barkema H.W., De Buck J., De Vliegher S., Chaffer M., Lewis J., Keefe G.P. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J. Dairy Sci., 2017; vol. 100: pp. 2137-2147.

6. Cameron M., Perry J., Middleton J.R., Chaffer M., Lewis J., Keefe G.P. Short communication: Evaluation of MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci. J. Dairy Sci., 2018: vol. 101: pp. 590-595.

7. Claydon M.A., Davey S.N., Edwards-Jones V., Gordon D.B. The rapid identification of intact microorga nisms using mass spectrometry. Nat. Biotechnol., 1996; vol. 14: pp. 1584-6.

8. Collado R., Montbrau C., Sitjà M., Prenafeta A. Study of the efficacy of a Streptococcus uberis mastitis vaccine against an experimental intramammary infection with a heterologous strain in dairy cows. J. Dairy Sci., 2018; vol. 101: pp. 10290-10302.

9. De Vliegher S., Fox L.K., Piepers S., McDougall S., Barkema H.W. Invited review:Mastitis in dairy herifers: nature of the disease, potential impact, prevention and control. J. Dairy Sci., 2012; vol. 95: pp. 1025-1040.

10. Eigner U., Holfelder M., Oberdorfer K., Betz-Wild U., Bertsch D., Fahr A.-M. Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin. Lab., 2009; vol. 55: pp. 289-96.

11. Elbehiry A., Al-Dubaib M., Marzouk E., Osman S., Edrees H. Performance of MALDI biotyper compared with Vitek TM 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. Microbiologyopen, 2016; vol. 5: pp. 1061-1070.

12. Esener N., Green M.J., Emes R.D., Jowett B., Davies P.L., Bradley A.J., Dottorini T. Discrimination of contagious and environmental strains of Streptococcus uberis in dairy herds by means of mass spectrometry and machine-learning. Sci Rep., 2018; vol. 8: pp.17517.

13.Gussmann M., Kirkebya C, Græsbøll K., Farre M., Halasa T. A strain-, cow-, and herd-specific bio-economic simulation model of intramammary infections in dairy cattle herds. J. Theor. Biol., 2018; vol. 449: pp. 83-93.

14. Holland R.D., Wilkes J.G., Rafii F., Sutherland J.B., Persons C.C., Voorhees K.J., Lay Jr, J.O. Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns using Matrix-assisted Laser Desorption/Ionization with Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom., 1996; vol. 10: pp. 1227-1232.

15. Hulland C., Dufour S., Munoz M. Milk Bacteriological Analysis Using MALDI-TOF Technology. National Mastitis Council, 2018; Madison, WI, New Prague, MN, USA.

16. Jørgensen H.J., Nordstoga A.B., Sviland S., Zadoks R.N., Sølverød L., Kvitle B., Mørk T. Streptococcus agalactiae in the environment of bovine dairy herds - rewriting the textbooks? Vet. Microbiol., 2016; vol. 184: pp. 64-72.

17. Kostrzewa, M., Schubert, S., 2016. MALDI-TOF Mass Spectrometry in Microbiology, MALDI-TOF Mass Spectrometry in Microbiology. Caister Academic Press N, UK.

18. Kroemker V., Reinecke F., Paduch J.H., Grabowsky N. Bovine Streptococcus uberis Intramammary Infections and Mastitis. Clin. Microbiol.: Open Access, 2014; vol. 3, n. 4: pp. 157-163.

19. Lyhs U., Kulkas L., Katholm J., Persson Waller K., Saha K., Tomusk R. J., Zadoks R. N. Streptococcus agalactiae serotype IV in humans and cattle, Northern Europe. Emerg. Infect. Diseases, 2016; vol. 22, n. 12: pp. 2097-2103.

20. Malvisi M., Stuknité M., Magro G., Minozzi G., Giardini A., De Noni I., Piccinini R. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J. Dairy Sci., 2016; vol. 99: pp. 2288-2296.

21. Manning S.D., Springman A.C., Million A.D., Milton N.R., McNamara S.E., Somsel P. A., Davies H.D. Association of Group B Streptococcus colonization and bovine exposure: a prospective cross-sectional cohort study. PLoS One, 2010; vol. 5, n. 1: e8795 6. McDonald, J.S., 1977.

22. Middleton J.R., Fox L.K., Pighetti G. Laboratory Handbook on Bovine Mastitis. National Mastitis Council, 2017; Madison, WI, New Prague, MN.

23. Nonnemann B., Lyhs U., Svennesen L., Kristensen K.A., Klaas I.C., Pedersen K. Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. J. Dairy Sci., 2019; 102, 2515-2524.

24. Plumed-Ferrer C., Barberio A., Franklin-Guild R., Werner B., McDonough P., Bennett J., Gioia G., Rota N., Welcome F., Nydam D. V., Moroni P. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections. J. Dairy Sci., 2015; vol. 98: pp. 6216-6225.

25. Plumed-Ferrer C., Uusikyla K., Korhonen J., von Wright A. Characterization of Lactococcus lactis isolates from bovine mastitis. Vet. Microbiol., 2013; vol. 167: pp. 592-599.

26. Prado M.E., Almeida R.A., Ozenb C., Luthera D.A., Lewisa M.J., Headricka S.J., Olivera S.P. Vaccination of dairy cows with recombinant Streptococcus uberis adhesion molecule induces antibodies that reduce adherence to and internalization of S. uberis into bovine mammary epithelial cells. Vet. Immunol. and Immunopathol., 2011; vol. 141: pp. 201-208.

27. Rodrigues M.X., Lima S. F., Higgins C. H., Canniatti-Brazaca S. G., Bicalho R. C. The Lactococcus genus as a potential emerging mastitis pathogen group: A report on an outbreak investigation. J. Dairy Sci. 2016; vol. 99: pp. 9864-9874.

28. Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P., Rolain J.M., Raoult D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix‐Assisted Laser Desorption Ionization Time‐of‐Flight Mass Spectrometry. Clin. Infect. Dis., 2009; vol. 49: pp. 543-551.

29. Seng P., Rolain J.-M., Fournier P.E., La Scola B., Drancourt M., Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol., 2010; vol. 5: pp. 1733-1754.

30. Shell W.S., Sayed M.L., El-Gedawy A.A., El Sadek, G.M., Samy A.A., Ali A.M.M. Identification of Staphylococcus aureus causing bovine mastitis using MALDI-TOF fingerprinting. Int. J. Dairy Sci., 2017; vol. 12: pp. 105-113.

31. Svennesen L., Mahmmoda Y.S., Skjølstrupa N. K., Mathiasena L. R., Katholmc J., Pedersend K., Klaasa I. C., Nielsena S. S. Accuracy of qPCR and bacterial culture for the diagnosis of bovine intramammary infections and teat skin colonisation with Streptococcus agalactiae and Staphylococcus aureus using Bayesian analysis. Prev. Vet. Med., 2018; vol. 161: pp. 69-74.

32. Svennesen L., Nielsen S.S., Mahmmod Y.S., Krömker V., Pedersen K., Klaas I.C. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J. Dairy Sci., 2019; vol. 102 n. 1: pp. 629-639.

33. Tassi R., McNeilly T.N., Fitzpatrick J.L., Fontaine M.C., Reddick D., Ramage C., Lutton M., Schukken Y.H., Zadoks R.N. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J. Dairy Sci., 2013; 96: 5129-5145.

34. van Veen, S.Q., Claas, E.C.J., Kuijper, E.J. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol., 2010; vol. 48: pp. 900-7.

35. Werner B., Moroni P., Gioia G., Lavín-Alconero L., Yousaf A., Charter M. E., Moslock Carter B., Bennett J., Nydam D.V., Welcome F., Schukken Y.H. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms. J. Dairy Sci., 2014; vol. 97: pp. 6964-6969.

36. Zadoks R.N., Allore H.G., Barkema H.W., Sampimon O.C., Gröhn Y.T., Schukken Y.H. Analysis of an outbreak of Streptococcus uberis mastitis. J. Dairy Sci. 2001; vol. 84: pp. 590-599.

37. Zadoks R.N., Gillespie B.E., Barkema H.W., Sampimon O.C., Oliver S.P., Schukken Y.H. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol. Infect., 2003; vol. 130: pp. 335-349.

38. Zanardi G., Caminiti A., Delle Donne G., Moroni P., Santi A., Galletti G., Tamba M., Bolzoni G., Bertocchi L. Short communication: Comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples. J. Dairy Sci., 2014; vol. 97: pp. 5592-5598.



Abbonati per accedere

Dal web internazionale

Clostridium novyi e morte improvvisa: una particolare clostridiosi nella scrofa

Il Clostridium novyi è stato isolato per la prima volta nel 1894 nelle cavie. Tale batterio è ampiamente distribuito nel suolo, nelle acque e nei sedimenti marini e colpisce sia l’uomo che gli animali con una diffusione che è globale.


Formazione a distanza abbinata a SUMMA



Formazione Settore Agro-Zootecnico