immagine

Attività svolta

Desidero ricevere una copia cartacea
Informativa sulla privacy
Iscrizione alla newsletter

Caratteristiche epidemiologiche della circolazione dell'influenza nelle popolazioni di suini: review sistematica e meta-analisi

Riassunto

Nel 2009 la comparsa di un virus influenzale pandemico di origine suina ha messo in evidenza l’importanza di implementare la sorveglianza dell’influenza nella popolazioni di maiali. Obiettivi di questa review sistematica e della meta-analisi sono stati descrivere le caratteristiche epidemiologiche dell’influenza suina (Swine Influenza, SI) nel mondo e identificare i fattori in grado di influenzare il controllo dell’infezione.

La review sistematica ha seguito le linee guida PRISMA. Sono stati presi in considerazione gli articoli pubblicati dopo il 1990 e riportanti dati riferiti alla SI, sulla sieroprevalenza individuale e di mandria, le percentuali di isolamento e identificazione, i fattori di rischio.  È stata condotta un’analisi di meta-regressione sulla base degli indici di sieroprevalenza e virologici.

Gli articoli inclusi sono stati in totale 217. Si è riscontrata una bassa sieroprevalenza dell’influenza aviare (Avian Influenza, AI; media individuale = 4,1%; di mandria = 15%), il che dimostra che i virus AI non persistono facilmente nel suino, mentre in genere la sieroprevalenza di SIV è elevata in tutti i continenti (medie individuali dell’influenza A = 32,6-87,8%; di mandria = 29,3-100%). Attraverso l’analisi di meta-regressione e/o con il supporto degli articoli sui fattori di rischio si è dimostrato che la densità maggiore di suini e il numero più elevato di capi per azienda sono associati a una sieroprevalenza  superiore di SI. Livelli inferiori di sieroprevalenza si osservano nei Paesi con PIL medio-basso. Questi risultati indicano che i grandi allevamenti industriali possono essere più a rischio di diffusione di SIV. Il prelievo da animali con sintomi simil-influenzali è correlato positivamente a percentuali migliori di isolamento; la maggior parte degli studi condotti in Europa, Nord America e America Latina si sono focalizzati sui capi con sintomatologia simil-influenzale.

Per approfondire la comprensione dell’epidemiologia della SI sarebbe auspicabile una standardizzazione dei modelli e dell’attività di reportistica degli studi epidemiologici che riguardano questa malattia. Nei Paesi con PIL medio-basso andrebbero valutate le performance dei sistemi di sorveglianza della SI per escludere errori tecnici legati a una prevalenza inferiore osservata dell’infezione. Concentrarsi su determinati gruppi di età degli animali, sistemi di allevamento e sui capi con sintomi simil-influenzali può favorire la sostenibilità economica del monitoraggio. Tuttavia, focalizzarsi sui maiali con sintomatologia simil-influenzale può pregiudicare l’identificazione dei virus a scapito dei ceppi meno virulenti per il suino che possono rappresentare invece una minaccia pandemica importante.

Parole chiave: virus, influenza, epidemiologia, suino.

 

Summary

Epidemiological features of influenza circulation in swine populations: a systematic review and meta-analysis

 

The emergence of the 2009 influenza pandemic virus with a swine origin stressed the importance of improving influenza surveillance in swine populations. The objectives of this systematic review and meta-analysis were to describe epidemiological features of swine influenza (SI) across the world and identify factors impacting swine influenza virus

surveillance. The systematic review followed the PRISMA guidelines. Articles published after 1990 containing data on SI on pig and herd-level seroprevalence, isolation and detection rates, and risk factors were included. Meta-regression analyses using seroprevalence and virological rates were performed. A total of 217 articles were included. Low avian influenza (AI) seroprevalence (means pig =4.1%; herd = 15%) was found, showing that AIV do not readily establish themselves in swine while SIV seroprevalence was usually high across continents (influenza A means pig = 32.6±87.8%; herd = 29.3±100%). Higher pig density and number of pigs per farm were shown by the meta-regression analyses and/or the risk factor articles to be associated with higher SI seroprevalence. Lower seroprevalence levels were observed for countries with low-to-medium GDP. These results suggest that larger industrial farms could be more at risk of SIV circulation. Sampling swine with influenza-like illness (ILI) was positively associated with higher isolation rates; most studies in Europe, Latin and North America were targeting swine with ILI. To improve understanding of SI epidemiology, standardization of the design and reporting of SI epidemiological studies is desirable. Performance of SI surveillance systems in low-to-medium GDP countries should be evaluated to rule out technical issues linked to lower observed SIV prevalence. Targeting certain swine age groups, farming systems and swine with ILI may improve the surveillance cost-effectiveness. However, focusing on pigs with ILI may bias virus detection against strains less virulent for swine but which may be important as pandemic threats.

Keywords: virus, influenza, epidemiology, pig.

 

 

Bibliografia

1. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary

genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009; 459(7250):1122±5. Epub

2009/06/12. https://doi.org/10.1038/nature08182 PMID: 19516283.

2. Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, et al. Review of influenza A virus in swine

worldwide: a call for increased surveillance and research. Zoonoses Public Health. 2014; 61(1):4±17.

Epub 2013/04/06. https://doi.org/10.1111/zph.12049 PMID: 23556412.

3. Nelson MI, Stratton J, Killian ML, Janas-Martindale A, Vincent AL. Continual Reintroduction of Human

Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014. J Virol. 2015; 89

(12):6218±26. Epub 2015/04/03. https://doi.org/10.1128/JVI.00459-15 PMID: 25833052;

4. Perera HK, Vijaykrishna D, Premarathna AG, Jayamaha CJ, Wickramasinghe G, Cheung CL, et al.

Molecular epidemiology of influenza A(H1N1)pdm09 virus among humans and swine, Sri Lanka. Emerg

Infect Dis. 2014; 20(12):2080±4. Epub 2014/11/25. https://doi.org/10.3201/eid2012.140842 PMID:

25417652;

5. Baudon E, Poon LL, Dao TD, Pham NT, Cowling BJ, Peyre M, et al. Detection of Novel Reassortant

Influenza A (H3N2) and H1N1 2009 Pandemic Viruses in Swine in Hanoi, Vietnam. Zoonoses Public

Health. 2014. https://doi.org/10.1111/zph.12164 PMID: 25363845.

6. Deng YM, Iannello P, Smith I, Watson J, Barr IG, Daniels P, et al. Transmission of influenza A(H1N1)

2009 pandemic viruses in Australian swine. Influenza Other Respi Viruses. 2012. Epub 2012/02/18.

https://doi.org/10.1111/j.1750-2659.2012.00337.x PMID: 22336333.

7. Hofshagen M, Gjerset B, Er C, Tarpai A, Brun E, Dannevig B, et al. Pandemic influenza A(H1N1)v:

human to pig transmission in Norway? Euro Surveill. 2009; 14(45). Epub 2009/11/28. PMID: 19941789.

8. Holyoake PK, Kirkland PD, Davis RJ, Arzey KE, Watson J, Lunt RA, et al. The first identified case of

pandemic H1N1 influenza in pigs in Australia. Aust Vet J. 2011; 89(11):427±31. Epub 2011/10/20.

https://doi.org/10.1111/j.1751-0813.2011.00844.x PMID: 22008120.

9. CDC. Influenza A (H3N2) Variant Virus: Centers for Disease Control and Prevention; 2015. http://www.

cdc.gov/flu/swineflu/h3n2v-cases.htm [accessed 01.12.2016].

10. Zhu H, Webby R, Lam TT, Smith DK, Peiris JS, Guan Y. History of Swine influenza viruses in Asia. Curr

Top Microbiol Immunol. 2013; 370:57±68. Epub 2011/09/29. https://doi.org/10.1007/82_2011_179

PMID: 21948002.

 

11. Brown IH. History and epidemiology of Swine influenza in Europe. Curr Top Microbiol Immunol2013; 370:133±46. Epub 2012/01/12. https://doi.org/10.1007/82_2011_194 PMID: 22234411.

12. Lorusso A, Vincent AL, Gramer ME, Lager KM, Ciacci-Zanella JR. Contemporary epidemiology of

North American lineage triple reassortant influenza A viruses in pigs. Curr Top Microbiol Immunol.

2013; 370:113±32. Epub 2012/01/24. https://doi.org/10.1007/82_2011_196 PMID: 22266673.

13. Moreno A, Barbieri I, Sozzi E, Luppi A, Lelli D, Lombardi G, et al. Novel swine influenza virus subtype

H3N1 in Italy. Vet Microbiol. 2009; 138(3±4):361±7. Epub 2009/04/29. https://doi.org/10.1016/j.vetmic.

2009.04.007 PMID: 19398171.

14. Choi YK, Pascua PN, Song MS. Swine influenza viruses: an Asian perspective. Curr Top Microbiol

Immunol. 2013; 370:147±72. Epub 2012/01/24. https://doi.org/10.1007/82_2011_195 PMID:

22266639.

15. Nelson M, Culhane MR, Rovira A, Torremorell M, Guerrero P, Norambuena J. Novel Human-like Influenza

A Viruses Circulate in Swine in Mexico and Chile. PLoS Curr. 2015; 7. Epub 2015/09/09. https://

doi.org/10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6 PMID: 26345598;

16. Ma W, Gramer M, Rossow K, Yoon KJ. Isolation and genetic characterization of new reassortant H3N1

swine influenza virus from pigs in the midwestern United States. J Virol. 2006; 80(10):5092±6. Epub

2006/04/28. https://doi.org/10.1128/JVI.80.10.5092-5096.2006 PMID: 16641303;

17. Lekcharoensuk P, Lager KM, Vemulapalli R, Woodruff M, Vincent AL, Richt JA. Novel swine influenza

virus subtype H3N1, United States. Emerg Infect Dis. 2006; 12(5):787±94. Epub 2006/05/18. https://

doi.org/10.3201/eid1205.051060 PMID: 16704839;

18. Lorusso A, Vincent AL, Gramer MR, Lager KM, Ciacci-Zanella JR. Contemporary Epidemiology of

North American Lineage Triple Reassortant Influenza A Viruses in Pigs. Curr Top Microbiol Immunol.

2012. Epub 2012/01/24. https://doi.org/10.1007/82_2011_196 PMID: 22266673.

19. Su S, Qi WB, Chen JD, Cao N, Zhu WJ, Yuan LG, et al. Complete Genome Sequence of an Avian-Like

H4N8 Swine Influenza Virus Discovered in Southern China. J Virol. 2012; 86(17):9542. Epub 2012/08/

11. https://doi.org/10.1128/JVI.01475-12 PMID: 22879613;

20. Kwon TY, Lee SS, Kim CY, Shin JY, Sunwoo SY, Lyoo YS. Genetic characterization of H7N2 influenza

virus isolated from pigs. Vet Microbiol. 2011; 153(3±4):393±7. Epub 2011/07/12. https://doi.org/10.

1016/j.vetmic.2011.06.011 PMID: 21741185.

21. Ma W, Vincent AL, Gramer MR, Brockwell CB, Lager KM, Janke BH, et al. Identification of H2N3 influenza

A viruses from swine in the United States. Proc Natl Acad Sci U S A. 2007; 104(52):20949±54.

Epub 2007/12/21. https://doi.org/10.1073/pnas.0710286104 PMID: 18093945;

22. Karasin AI, Brown IH, Carman S, Olsen CW. Isolation and characterization of H4N6 avian influenza

viruses from pigs with pneumonia in Canada. J Virol. 2000; 74(19):9322±7. Epub 2000/09/12. PMID:

10982381;

23. Tu J, Zhou H, Jiang T, Li C, Zhang A, Guo X, et al. Isolation and molecular characterization of equine

H3N8 influenza viruses from pigs in China. Arch Virol. 2009; 154(5):887±90. Epub 2009/04/28. https://

doi.org/10.1007/s00705-009-0381-1 PMID: 19396578.

24. Brown IH, Alexander DJ, Chakraverty P, Harris PA, Manvell RJ. Isolation of an influenza A virus of

unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig

to pig. Vet Microbiol. 1994; 39(1±2):125±34. Epub 1994/03/01. PMID: 8203118.

25. Kuntz-Simon G, Madec F. Genetic and antigenic evolution of swine influenza viruses in Europe and

evaluation of their zoonotic potential. Zoonoses Public Health. 2009; 56(6±7):310±25. Epub 2009/06/

06. https://doi.org/10.1111/j.1863-2378.2009.01236.x PMID: 19497089.

26. Zhu H, Webby R, Lam TT, Smith DK, Peiris JS, Guan Y. History of Swine influenza viruses in Asia. Curr

Top Microbiol Immunol. 2013; 370:57±68. Epub 2011/09/29. https://doi.org/10.1007/82_2011_179

PMID: 21948002.

27. Trevennec K, Cowling BJ, Peyre M, Baudon E, Martineau GP, Roger F. Swine influenza surveillance in

East and Southeast Asia: a systematic review. Anim Health Res Rev. 2011; 12(2):213±23. Epub 2011/

11/30. https://doi.org/10.1017/S1466252311000181 PMID: 22123276.

28. Kong W, Ye J, Guan S, Liu J, Pu J. Epidemic status of Swine influenza virus in china. Indian journal of

microbiology. 2014; 54(1):3±11. Epub 2014/01/16. https://doi.org/10.1007/s12088-013-0419-7 PMID:

24426160;

29. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for

systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews.

2015; 4:1. https://doi.org/10.1186/2046-4053-4-1 PMID: 25554246;

30. Kuntz-Simon G, Madec F. Genetic and antigenic evolution of swine influenza viruses in Europe and

evaluation of their zoonotic potential. Zoonoses Public Health. 2009; 56(6±7):310±25. Epub 2009/06/

06. https://doi.org/10.1111/j.1863-2378.2009.01236.x PMID: 19497089.

31. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical

 

Computing, Vienna, Austria. http://www.R-project.org/.

32. Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software.

2010; 36(3):1±48.

33. FAO. Food and Agriculture Organization of the United Nations statistic division 2015. http://faostat3.

fao.org/home/E. (accessed 13 April 2015).

34. Bank TW. World Bank Open Data 2015. http://data.worldbank.org/. (accessed 13 April 2015).

35. Simon-Grife M, Martin-Valls GE, Vilar MJ, Garcia-Bocanegra I, Mora M, Martin M, et al. Seroprevalence

and risk factors of swine influenza in Spain. Vet Microbiol. 2011; 149(1±2):56±63. Epub 2010/11/30.

https://doi.org/10.1016/j.vetmic.2010.10.015 PMID: 21112702.

36. Yaeger MJ, Karriker LA, Layman L, Halbur PG, Huber GH, Van Hulzen K. Survey of disease pressures

in twenty-six niche herds in the midwestern United States. Journal of Swine Health and Production.

2009; 17(5):256±63.

37. Meyns T, Van Steelant J, Rolly E, Dewulf J, Haesebrouck F, Maes D. A cross-sectional study of risk factors

associated with pulmonary lesions in pigs at slaughter. The Veterinary Journal. 2011; 187(3):388±

92. http://dx.doi.org/10.1016/j.tvjl.2009.12.027. PMID: 20122861

38. Song MS, Lee JH, Pascua PN, Baek YH, Kwon HI, Park KJ, et al. Evidence of human-to-swine transmission

of the pandemic (H1N1) 2009 influenza virus in South Korea. J Clin Microbiol. 2010; 48

(9):3204±11. Epub 2010/07/09. https://doi.org/10.1128/JCM.00053-10 PMID: 20610681;

39. Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG. Evolution of swine H3N2

influenza viruses in the United States. J Virol. 2000; 74(18):8243±51. Epub 2000/08/23. PMID:

10954521;

40. Van Reeth K, Ma W. Swine influenza virus vaccines: to change or not to change-that's the question.

Curr Top Microbiol Immunol. 2013; 370:173±200. Epub 2012/09/15. https://doi.org/10.1007/82_2012_

266 PMID: 22976350.

41. Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, et al. Review of Influenza A Virus in Swine

Worldwide: a Call for Increased Surveillance and Research. Zoonoses Public Health. 2013. Epub 2013/

04/06. https://doi.org/10.1111/zph.12049 PMID: 23556412.

42. Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijens B, et al. Risk indicators for the seroprevalence

of Mycoplasma hyopneumoniae, porcine influenza viruses and Aujeszky's disease virus in

slaughter pigs from fattening pig herds. Zentralblatt fur Veterinarmedizin Reihe B Journal of veterinary

medicine Series B. 1999; 46(5):341±52. Epub 1999/07/23. PMID: 10416368.

43. Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijens B, et al. Herd factors associated with the

seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds.

Vet Res. 2000; 31(3):313±27. Epub 2000/06/23. https://doi.org/10.1051/vetres:2000122 PMID:

10863948.

44. Panyasing Y, Goodell C, Kittawornrat A, Wang C, Levis I, Desfresne L, et al. Influenza A Virus Surveillance

Based on Pre-Weaning Piglet Oral Fluid Samples. Transbound Emerg Dis. 2014. Epub 2014/12/

10. https://doi.org/10.1111/tbed.12307 PMID: 25488821.

45. Yuan Z, Zhu W, Chen Y, Zhou P, Cao Z, Xie J, et al. Serological surveillance of H5 and H9 avian influenza

A viral infections among pigs in Southern China. Microbial pathogenesis. 2013; 64:39±42. Epub

2013/08/27. https://doi.org/10.1016/j.micpath.2013.08.001 PMID: 23973737.

46. Zhang G, Kong W, Qi W, Long LP, Cao Z, Huang L, et al. Identification of an H6N6 swine influenza virus

in southern China. Infect Genet Evol. 2011; 11(5):1174±7. Epub 2011/03/09. https://doi.org/10.1016/j. meegid.2011.02.023 PMID: 21382518.

47. El-Sayed A, Awad W, Fayed A, Hamann HP, Zschock M. Avian influenza prevalence in pigs, Egypt. Emerg Infect Dis. 2010; 16(4):726±7. Epub 2010/03/31. https://doi.org/10.3201/eid1604.091316 PMID: 20350404;

48. Deng YM, Iannello P, Smith I, Watson J, Barr IG, Daniels P, et al. Transmission of influenza A(H1N1)

2009 pandemic viruses in Australian swine. Influenza Other Respir Viruses. 2012; 6(3):e42±7. Epub 2012/02/18. https://doi.org/10.1111/j.1750-2659.2012.00337.x PMID: 22336333.

49. Horby PW, Laurie KL, Cowling BJ, Engelhardt OG, Sturm-Ramirez K, Sanchez JL, et al. CONSISE statement on the Reporting of Seroepidemiologic Studies for Influenza (ROSES-I statement): an extension of the STROBE statement. Influenza Other Respir Viruses. 2016. https://doi.org/10.1111/irv.12411

PMID: 27417916.

50. WHO. Avian influenza A(H7N9) virus 2015. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/ [accessed 30.11.2015].

51. CDC. Highly Pathogenic Asian Avian Influenza A (H5N1) in People: Centers for Disease Control and Prevention; 2015. http://www.cdc.gov/flu/avianflu/h5n1-people.htm [accessed 30.11.2015].

52. Xu W, Lu L, Shen B, Li J, Xu J, Jiang S. Serological investigation of subclinical influenza A(H7H9) infection

among healthcare and non-healthcare workers in Zhejiang Province, China. Clin Infect Dis. 2013;

57(6):919±21. https://doi.org/10.1093/cid/cit396 PMID: 23759348.

53. Bai T, Zhou J, Shu Y. Serologic study for influenza A (H7N9) among high-risk groups in China. The New

England journal of medicine. 2013; 368(24):2339±40. https://doi.org/10.1056/NEJMc1305865 PMID:

23718151.

54. Yang S, Chen Y, Cui D, Yao H, Lou J, Huo Z, et al. Avian-origin influenza A(H7N9) infection in influenza

A(H7N9)-affected areas of China: a serological study. J Infect Dis. 2014; 209(2):265±9. https://doi.org/

10.1093/infdis/jit430 PMID: 23935201.

55. Van Kerkhove MD, Mumford E, Mounts AW, Bresee J, Ly S, Bridges CB, et al. Highly pathogenic avian

influenza (H5N1): pathways of exposure at the animal-human interface, a systematic review. PLoS

One. 2011; 6(1):e14582. Epub 2011/02/02. https://doi.org/10.1371/journal.pone.0014582 PMID:

21283678;

56. El-Sayed A, Prince A, Fawzy A, Nadra E, Abdou MI, Omar L, et al. Sero-prevalence of avian influenza

in animals and human in Egypt. Pakistan journal of biological sciences: PJBS. 2013; 16(11):524±9.

Epub 2014/02/07. PMID: 24498821.

57. Khan SU, Anderson BD, Heil GL, Liang S, Gray GC. A Systematic Review and Meta-Analysis of the

Seroprevalence of Influenza A(H9N2) Infection Among Humans. J Infect Dis. 2015; 212(4):562±9.

https://doi.org/10.1093/infdis/jiv109 PMID: 25712969;

58. Torremorell M, Allerson M, Corzo C, Diaz A, Gramer M. Transmission of Influenza A Virus in Pigs.

Transbound Emerg Dis. 2012. Epub 2012/01/10. https://doi.org/10.1111/j.1865-1682.2011.01300.x

PMID: 22226050.

59. Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne detection and quantification of

Swine influenza a virus in air samples collected inside, outside and downwind from Swine barns. PLoS

One. 2013; 8(8):e71444. Epub 2013/08/21. https://doi.org/10.1371/journal.pone.0071444 PMID:

23951164;

60. Trevennec K, Grosbois V, Roger F, Ho TH, Berthouly-Salazar C, Chevalier V. Evidence for freedom

from swine influenza in a remote area of Northern Vietnam. Acta Trop. 2012; 122(1):160±3. Epub 2011/

12/14. https://doi.org/10.1016/j.actatropica.2011.11.012 PMID: 22154880.

61. Trevennec K, Leger L, Lyazrhi F, Baudon E, Cheung CY, Roger F, et al. Transmission of pandemic

influenza H1N1 (2009) in Vietnamese swine in 2009±2010. Influenza Other Respir Viruses. 2012; 6

(5):348±57. Epub 2012/01/04. https://doi.org/10.1111/j.1750-2659.2011.00324.x PMID: 22212737;

62. Baudon E, Poon LL, Dao TD, Pham NT, Cowling BJ, Peyre M, et al. Detection of Novel Reassortant

Influenza A (H3N2) and H1N1 2009 Pandemic Viruses in Swine in Hanoi, Vietnam. Zoonoses Public

Health. 2015; 62(6):429±34. https://doi.org/10.1111/zph.12164 PMID: 25363845.

63. Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, et al. Effect of herd size on subclinical

infection of swine in Vietnam with influenza A viruses. BMC Vet Res. 2016; 12(1):227. https://

doi.org/10.1186/s12917-016-0844-z PMID: 27724934;

64. FAO. The state of food and agriculture. Rome <www.fao.org/docrep/012/i0680e/i0680e00.htm>: 2009.

65. Poljak Z, Dewey CE, Martin SW, Christensen J, Carman S, Friendship RM. Prevalence of and risk factors

for influenza in southern Ontario swine herds in 2001 and 2003. Can J Vet Res. 2008; 72(1):7±17.

Epub 2008/01/25. PMID: 18214156;

66. Corzo CA, Morrison RB, Fitzpatrick AM, Culhane MR. Risk factors for detecting influenza A virus in

growing pigs. Journal of Swine Health and Production. 2014; 22(4):176±84. WOS:000338098300004.

67. Diaz A, Perez A, Sreevatsan S, Davies P, Culhane M, Torremorell M. Association between Influenza A

Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds. PLoS One. 2015; 10

(6):e0129213. Epub 2015/06/16. https://doi.org/10.1371/journal.pone.0129213 PMID: 26076494;

68. Kaplan BS, DeBeauchamp J, Stigger-Rosser E, Franks J, Crumpton JC, Turner J, et al. Influenza Virus

Surveillance in Coordinated Swine Production Systems, United States. Emerg Infect Dis. 2015; 21

(10):1834±6. Epub 2015/09/25. https://doi.org/10.3201/eid2110.140633 PMID: 26402228;

69. Allerson MW, Davies PR, Gramer MR, Torremorell M. Infection Dynamics of Pandemic 2009 H1N1

Influenza Virus in a Two-Site Swine Herd. Transbound Emerg Dis. 2013. Epub 2013/01/09. https://doi.

org/10.1111/tbed.12053 PMID: 23294593.

70. Rose N, Herve S, Eveno E, Barbier N, Eono F, Dorenlor V, et al. Dynamics of influenza A virus infections

in permanently infected pig farms: evidence of recurrent infections, circulation of several swine

influenza viruses and reassortment events. Vet Res. 2013; 44(1):72. Epub 2013/09/07. https://doi.org/

 

10.1186/1297-9716-44-72 PMID: 24007505.

71. Simon-Grife M, Martin-Valls GE, Vilar MJ, Busquets N, Mora-Salvatierra M, Bestebroer TM, et al.

Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment. Vet

Res. 2012; 43(1):24. Epub 2012/03/29. https://doi.org/10.1186/1297-9716-43-24 PMID: 22452923.

72. Von Dobschuetz S, De Nardi M, Harris KA, Munoz O, Breed AC, Wieland B, et al. Influenza surveillance

in animals: what is our capacity to detect emerging influenza viruses with zoonotic potential? Epidemiol

 

Infect. 2014:1±18. Epub 2014/10/01. https://doi.org/10.1017/S0950268814002106 PMID: 25268692.

TORNA INDIETRO
Abbonati per accedere

Dal web internazionale
12/03/2019

Valutazione nutrizionale del glutenolo, sottoprodotto dell’etanolo

La produzione di etanolo (impiegato come bio-carburante) a partire dal mais è ormai largamente diffusa in diverse parti del mondo, soprattutto negli Stati Uniti. Alcuni sottoprodotti di questa distillazione (come i DDGS ossia “distillers dried grains with solubles”) vengono impiegati nell’alimentazione animale.

 
 

Formazione a distanza abbinata a SUMMA

 

 

Formazione Settore Agro-Zootecnico